Suppr超能文献

使用部分完整时间序列传感器数据进行自动化认知健康评估。

Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data.

机构信息

School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States.

出版信息

Methods Inf Med. 2022 Sep;61(3-04):99-110. doi: 10.1055/s-0042-1756649. Epub 2022 Oct 11.

Abstract

BACKGROUND

Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation.

OBJECTIVE

The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures.

METHODS

We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures.

RESULTS

We validate our approach using continuous smartwatch data for  = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from  = 0.1230 to  = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings.

摘要

背景

行为与健康密切相关。因此,连续的可穿戴传感器数据具有预测临床指标的潜力。但是,数据采集会中断,这就需要进行策略性的数据插补。

目的

本工作旨在改编数据生成算法以插补多变量时间序列数据。这将使我们能够创建可预测临床健康指标的数字行为标记。

方法

我们创建了一个双向时间序列生成对抗网络来插补缺失的传感器读数。基于多个字段和多个时间点之间的关系,对单个时间点或更大的时间间隔进行值插补。从完整的数据中提取数字行为标记,并将其映射到预测的临床指标。

结果

我们使用 14 名参与者的连续智能手表数据验证了我们的方法。在对遗漏数据进行重构时,我们观察到平均归一化平均绝对误差为 0.0197。然后,我们创建了机器学习模型,从重构的完整数据中预测临床指标,相关系数范围从 0.1230 到 0.7623。这项工作表明,在自然环境中,可以使用在野外采集的可穿戴传感器数据来提供有关个人健康状况的深入了解。

相似文献

1
Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data.
Methods Inf Med. 2022 Sep;61(3-04):99-110. doi: 10.1055/s-0042-1756649. Epub 2022 Oct 11.
5
Generative adversarial networks for imputing missing data for big data clinical research.
BMC Med Res Methodol. 2021 Apr 20;21(1):78. doi: 10.1186/s12874-021-01272-3.
8
Adversarial Joint-Learning Recurrent Neural Network for Incomplete Time Series Classification.
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1765-1776. doi: 10.1109/TPAMI.2020.3027975. Epub 2022 Mar 4.
9
10
SuperMICE: An Ensemble Machine Learning Approach to Multiple Imputation by Chained Equations.
Am J Epidemiol. 2022 Feb 19;191(3):516-525. doi: 10.1093/aje/kwab271.

本文引用的文献

1
Fusing Ambient and Mobile Sensor Features Into a Behaviorome for Predicting Clinical Health Scores.
IEEE Access. 2021;9:65033-65043. doi: 10.1109/access.2021.3076362. Epub 2021 Apr 28.
2
Toward a bioarchaeology of urbanization: Demography, health, and behavior in cities in the past.
Am J Phys Anthropol. 2021 Aug;175 Suppl 72:79-118. doi: 10.1002/ajpa.24249. Epub 2021 Feb 22.
3
Missing Data in Clinical Research: A Tutorial on Multiple Imputation.
Can J Cardiol. 2021 Sep;37(9):1322-1331. doi: 10.1016/j.cjca.2020.11.010. Epub 2020 Dec 1.
6
Generative Imputation and Stochastic Prediction.
IEEE Trans Pattern Anal Mach Intell. 2022 Mar;44(3):1278-1288. doi: 10.1109/TPAMI.2020.3022383. Epub 2022 Feb 3.
7
Healthy lifestyle and the risk of Alzheimer dementia: Findings from 2 longitudinal studies.
Neurology. 2020 Jul 28;95(4):e374-e383. doi: 10.1212/WNL.0000000000009816. Epub 2020 Jun 17.
8
Bridging the gap between performance-based assessment and self-reported everyday functioning: An ecological momentary assessment approach.
Clin Neuropsychol. 2020 May;34(4):678-699. doi: 10.1080/13854046.2020.1733097. Epub 2020 Mar 19.
10
Easing Power Consumption of Wearable Activity Monitoring with Change Point Detection.
Sensors (Basel). 2020 Jan 6;20(1):310. doi: 10.3390/s20010310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验