Suppr超能文献

基于定量特征融合的粒子群优化模糊 CNN 在超声图像质量识别中的应用。

Particle Swarm Optimized Fuzzy CNN With Quantitative Feature Fusion for Ultrasound Image Quality Identification.

机构信息

Department of Computer Science and EngineeringMawlana Bhashani Science and Technology University Tangail 1902 Bangladesh.

Institute of Information Technology, Jahangirnagar University Savar Dhaka 1342 Bangladesh.

出版信息

IEEE J Transl Eng Health Med. 2022 Aug 10;10:1800712. doi: 10.1109/JTEHM.2022.3197923. eCollection 2022.

Abstract

Inherently ultrasound images are susceptible to noise which leads to several image quality issues. Hence, rating of an image's quality is crucial since diagnosing diseases requires accurate and high-quality ultrasound images. This research presents an intelligent architecture to rate the quality of ultrasound images. The formulated image quality recognition approach fuses feature from a Fuzzy convolutional neural network (fuzzy CNN) and a handcrafted feature extraction method. We implement the fuzzy layer in between the last max pooling and the fully connected layer of the multiple state-of-the-art CNN models to handle the uncertainty of information. Moreover, the fuzzy CNN uses Particle swarm optimization (PSO) as an optimizer. In addition, a novel Quantitative feature extraction machine (QFEM) extracts hand-crafted features from ultrasound images. Next, the proposed method uses different classifiers to predict the image quality. The classifiers categories ultrasound images into four types (normal, noisy, blurry, and distorted) instead of binary classification into good or poor-quality images. The results of the proposed method exhibit a significant performance in accuracy (99.62%), precision (99.62%), recall (99.61%), and f1-score (99.61%). This method will assist a physician in automatically rating informative ultrasound images with steadfast operation in real-time medical diagnosis.

摘要

由于超声图像容易受到噪声的影响,从而导致多种图像质量问题。因此,对图像质量进行评估至关重要,因为诊断疾病需要准确和高质量的超声图像。本研究提出了一种智能架构来评估超声图像的质量。所提出的图像质量识别方法融合了来自模糊卷积神经网络(fuzzy CNN)和手工特征提取方法的特征。我们在多个最先进的 CNN 模型的最后一个最大池化层和全连接层之间实现模糊层,以处理信息的不确定性。此外,模糊 CNN 使用粒子群优化(PSO)作为优化器。此外,一种新颖的定量特征提取机(QFEM)从超声图像中提取手工特征。然后,所提出的方法使用不同的分类器来预测图像质量。这些分类器将超声图像分为四类(正常、噪声、模糊和失真),而不是将其分为良好或不良质量的图像进行二进制分类。所提出方法的结果在准确性(99.62%)、精度(99.62%)、召回率(99.61%)和 f1 分数(99.61%)方面表现出显著的性能。该方法将帮助医生在实时医学诊断中自动对有信息的超声图像进行评分,并且操作稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0feb/9550163/56194eeade13/moni1-3197923.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验