Suppr超能文献

基于多区域和多序列 MRI 放射组学分析的胶质母细胞瘤 MGMT 启动子甲基化的术前预测。

Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis.

机构信息

Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.

Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Sci Rep. 2024 Jul 11;14(1):16031. doi: 10.1038/s41598-024-66653-2.

Abstract

O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.

摘要

O6-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)已被证明是胶质母细胞瘤(GBM)的一个重要预后和预测标志物。本研究旨在基于 MRI 数据建立一个可靠的放射组学模型,以预测 GBM 的 MGMT 启动子甲基化状态。本回顾性研究共纳入 183 例胶质母细胞瘤患者。为每位患者提取可视 Rembrandt 图像(VASARI)特征,并从多参数 MRI 的增强、坏死、“非增强和水肿”区域提取总共 14676 个多区域特征。基于不同亚区和不同序列的放射组学特征,构建了 12 个个体放射组学模型。构建了四个单序列模型、三个单区域模型和结合所有个体模型的联合放射组学模型。最后,评估了添加临床因素和 VASARI 特征的预测性能。在测试集 1 和测试集 2 中,结合所有个体放射组学模型的 ComRad 模型表现最佳,其受试者工作特征曲线(AUC)下面积分别为 0.839(0.709-0.963)和 0.739(0.581-0.897)。结果表明,结合多区域和多参数 MRI 特征的放射组学模型在预测 GBM 中 MGMT 甲基化状态方面表现出良好的性能。在所有构建的模型中,结合所有个体放射组学模型的建模方案表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a2a/11239670/4a01315020cd/41598_2024_66653_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验