Suppr超能文献

使用特定人群切点、自我报告的健康状况和社会经济参数预测肌肉减少症的影响:一项针对60岁及以上科索沃社区居民的横断面研究。

Impact of Using Population-Specific Cut-Points, Self-Reported Health, and Socio-Economic Parameters to Predict Sarcopenia: A Cross-Sectional Study in Community-Dwelling Kosovans Aged 60 Years and Older.

作者信息

Boshnjaku Arben, Bahtiri Abedin, Feka Kaltrina, Krasniqi Ermira, Tschan Harald, Wessner Barbara

机构信息

Centre for Sport Science and University Sports, University of Vienna, 1150 Vienna, Austria.

Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria.

出版信息

J Clin Med. 2022 Sep 22;11(19):5579. doi: 10.3390/jcm11195579.

Abstract

The age-related decline of muscle strength, mass, and physical performance (sarcopenia) has been raising concerns among the scientific and healthcare communities. This decline may differ between populations, age groups, and sexes. Therefore, we aimed to explore sarcopenia together with the impact of health and socio-economic parameters in mature Kosovans. A cross-sectional study was conducted on community-dwelling adults aged ≥ 60 years (n = 240, 47.1% female) from the Prishtina region. Sarcopenia was identified using the following criteria: (i) the European Working Group in Sarcopenia for Older People (EWGSOP1), (ii) the revised EWGSOP2 algorithms, and (iii) sex-specific cut-points derived from the Kosovan population. In males, pre-sarcopenia/probable sarcopenia was detected from the EWGSOP1, EWGSOP2 and Kosovan-specific criteria at values of 3.1%, 5.5%, and 28.3%; sarcopenia was detected at 1.6%, 5.5%, and 0.0%, and severe sarcopenia was detected at 4.7%, 2.4%, and 4.7%, respectively. Pre-sarcopenia was lower in females (0.9%, 5.3%, 16.8%), with no cases of sarcopenia or severe sarcopenia detected by either algorithm. Sarcopenic males were older, had a lower weight, BMI, skeletal muscle mass, performance score, nutritional status (p < 0.001), educational level (p = 0.035), and higher malnourishment risk (p = 0.005). It is notable that high overweight and obesity levels were also detected (93.8% of females, 77.1% of males). This study highlights the importance of using population-specific cut-points when diagnosing sarcopenia, as otherwise its occurrence may be underestimated, especially in obese persons. Age, body composition, physical performance, health, and socio-economic conditions can influence the occurrence of sarcopenia.

摘要

与年龄相关的肌肉力量、质量和身体机能下降(肌肉减少症)一直引起科学界和医疗界的关注。这种下降在不同人群、年龄组和性别之间可能存在差异。因此,我们旨在探讨科索沃成年人中的肌肉减少症以及健康和社会经济参数的影响。对普里什蒂纳地区年龄≥60岁的社区居住成年人(n = 240,47.1%为女性)进行了一项横断面研究。使用以下标准确定肌肉减少症:(i)欧洲老年人肌肉减少症工作组(EWGSOP1),(ii)修订后的EWGSOP2算法,以及(iii)源自科索沃人群的性别特异性切点。在男性中,根据EWGSOP1、EWGSOP2和科索沃特定标准,分别在3.1%、5.5%和28.3%的值时检测到肌肉减少症前期/可能的肌肉减少症;在1.6%、5.5%和0.0%时检测到肌肉减少症,在4.7%、2.4%和4.7%时检测到严重肌肉减少症。女性的肌肉减少症前期较低(0.9%、5.3%、16.8%),两种算法均未检测到肌肉减少症或严重肌肉减少症病例。患有肌肉减少症的男性年龄更大,体重、体重指数、骨骼肌质量、身体机能评分、营养状况更低(p < 0.001),教育水平更低(p = 0.035),营养不良风险更高(p = 0.005)。值得注意的是,还检测到高超重和肥胖水平(女性为93.8%,男性为77.1%)。这项研究强调了在诊断肌肉减少症时使用特定人群切点的重要性,否则其发生率可能被低估,尤其是在肥胖人群中。年龄、身体成分、身体机能、健康和社会经济状况会影响肌肉减少症的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858c/9572927/27ac9fe03de8/jcm-11-05579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验