Suppr超能文献

虚拟广泛读通:一种新的化学读通开放获取软件及其在植物致癌性评估中的应用。

Virtual Extensive Read-Across: A New Open-Access Software for Chemical Read-Across and Its Application to the Carcinogenicity Assessment of Botanicals.

机构信息

Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.

KODE Srl, 56122 Pisa, Italy.

出版信息

Molecules. 2022 Oct 5;27(19):6605. doi: 10.3390/molecules27196605.

Abstract

Read-across applies the principle of similarity to identify the most similar substances to represent a given target substance in data-poor situations. However, differences between the target and the source substances exist. The present study aims to screen and assess the effect of the key components in a molecule which may escape the evaluation for read-across based only on the most similar substance(s) using a new open-access software: Virtual Extensive Read-Across (VERA). VERA provides a means to assess similarity between chemicals using structural alerts specific to the property, pre-defined molecular groups and structural similarity. The software finds the most similar compounds with a certain feature, e.g., structural alerts and molecular groups, and provides clusters of similar substances while comparing these similar substances within different clusters. Carcinogenicity is a complex endpoint with several mechanisms, requiring resource intensive experimental bioassays and a large number of animals; as such, the use of read-across as part of new approach methodologies would support carcinogenicity assessment. To test the VERA software, carcinogenicity was selected as the endpoint of interest for a range of botanicals. VERA correctly labelled 70% of the botanicals, indicating the most similar substances and the main features associated with carcinogenicity.

摘要

读通法(read-across)应用相似性原则,在数据匮乏的情况下,确定最相似的物质来代表给定的目标物质。然而,目标物质和源物质之间存在差异。本研究旨在使用新的开放获取软件:虚拟广泛读通法(VERA)筛选和评估分子中关键成分的影响,这些关键成分可能仅基于最相似的物质(s)而无法进行读通法评估。VERA 提供了一种使用特定于属性的结构警示、预定义的分子基团和结构相似性来评估化学品之间相似性的方法。该软件可以找到具有特定特征(例如结构警示和分子基团)的最相似化合物,并在比较不同簇中的相似物质时提供相似物质的簇。致癌性是一个具有多种机制的复杂终点,需要资源密集型的实验生物测定和大量动物;因此,将读通法作为新方法学的一部分使用将支持致癌性评估。为了测试 VERA 软件,选择致癌性作为一系列植物的感兴趣终点。VERA 正确标记了 70%的植物,指出了最相似的物质和与致癌性相关的主要特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3700/9570968/cfc9202646ad/molecules-27-06605-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验