Suppr超能文献

开发一种智能成像系统,用于确定野生开心果的成熟度。

Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios.

机构信息

Mechanical Engineering of Biosystems Department, Ilam University, Ilam 69315-516, Iran.

Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.

出版信息

Sensors (Basel). 2022 Sep 21;22(19):7134. doi: 10.3390/s22197134.

Abstract

Rapid, non-destructive, and smart assessment of the maturity levels of fruit facilitates their harvesting and handling operations throughout the supply chain. Recent studies have introduced machine vision systems as a promising candidate for non-destructive evaluations of the ripeness levels of various agricultural and forest products. However, the reported models have been fruit-specific and cannot be applied to other fruit. In this regard, the current study aims to evaluate the feasibility of estimating the ripeness levels of wild pistachio fruit using image processing and artificial intelligence techniques. Images of wild pistachios at four ripeness levels were recorded using a digital camera, and 285 color and texture features were extracted from 160 samples. Using the quadratic sequential feature selection method, 16 efficient features were identified and used to estimate the maturity levels of samples. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and an artificial neural network (ANN) were employed to classify samples into four ripeness levels, including initial unripe, secondary unripe, ripe, and overripe. The developed machine vision system achieved a correct classification rate (CCR) of 93.75, 97.5, and 100%, respectively. The high accuracy of the developed models confirms the capability of the low-cost visible imaging system in assessing the ripeness of wild pistachios in a non-destructive, automated, and rapid manner.

摘要

快速、无损且智能的水果成熟度评估有助于在整个供应链中进行水果的收获和处理操作。最近的研究已经将机器视觉系统引入作为各种农业和林业产品成熟度无损评估的有前途的候选者。然而,报告的模型是特定于水果的,不能应用于其他水果。在这方面,本研究旨在评估使用图像处理和人工智能技术估算野生开心果果实成熟度的可行性。使用数码相机记录了四个成熟度级别的野生开心果图像,并从 160 个样本中提取了 285 个颜色和纹理特征。使用二次顺序特征选择方法,确定了 16 个有效的特征,并用于估计样本的成熟度水平。线性判别分析(LDA)、二次判别分析(QDA)和人工神经网络(ANN)被用于将样本分类为四个成熟度级别,包括初始未成熟、次级未成熟、成熟和过熟。开发的机器视觉系统分别实现了 93.75%、97.5%和 100%的正确分类率(CCR)。开发模型的高精度证实了低成本可见成像系统在无损、自动和快速评估野生开心果成熟度方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab23/9572321/8bba375f608e/sensors-22-07134-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验