Digital Society Center, Fondazione Bruno Kessler, 38123 Trento, Italy.
Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy.
Sensors (Basel). 2022 Sep 27;22(19):7314. doi: 10.3390/s22197314.
Electroencephalogram (EEG) data are typically affected by artifacts. The detection and removal of bad channels (i.e., with poor signal-to-noise ratio) is a crucial initial step. EEG data acquired from different populations require different cleaning strategies due to the inherent differences in the data quality, the artifacts' nature, and the employed experimental paradigm. To deal with such differences, we propose a robust EEG bad channel detection method based on the Local Outlier Factor (LOF) algorithm. Unlike most existing bad channel detection algorithms that look for the global distribution of channels, LOF identifies bad channels relative to the local cluster of channels, which makes it adaptable to any kind of EEG. To test the performance and versatility of the proposed algorithm, we validated it on EEG acquired from three populations (newborns, infants, and adults) and using two experimental paradigms (event-related and frequency-tagging). We found that LOF can be applied to all kinds of EEG data after calibrating its main hyperparameter: the LOF threshold. We benchmarked the performance of our approach with the existing state-of-the-art (SoA) bad channel detection methods. We found that LOF outperforms all of them by improving the F1 Score, our chosen performance metric, by about 40% for newborns and infants and 87.5% for adults.
脑电图(EEG)数据通常会受到伪影的影响。检测和去除坏道(即信噪比差)是至关重要的初始步骤。由于数据质量、伪影性质和采用的实验范式的固有差异,来自不同人群的 EEG 数据需要不同的清理策略。为了应对这些差异,我们提出了一种基于局部离群因子(LOF)算法的稳健 EEG 坏道检测方法。与大多数寻找通道全局分布的现有坏道检测算法不同,LOF 相对于通道的局部簇来识别坏道,这使其适应任何类型的 EEG。为了测试所提出算法的性能和通用性,我们在来自三个群体(新生儿、婴儿和成年人)的 EEG 上,并使用两种实验范式(事件相关和频率标记)对其进行了验证。我们发现,通过校准其主要超参数(LOF 阈值),LOF 可以应用于所有类型的 EEG 数据。我们使用现有的最先进(SoA)坏道检测方法来评估我们方法的性能。我们发现,LOF 通过提高我们选择的性能指标 F1 分数,在新生儿和婴儿中提高约 40%,在成年人中提高 87.5%,优于所有方法。