Fondazione Bruno Kessler, Trento, Italy; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
Fondazione Bruno Kessler, Trento, Italy.
Dev Cogn Neurosci. 2022 Apr;54:101068. doi: 10.1016/j.dcn.2022.101068. Epub 2022 Jan 15.
Electroencephalography (EEG) is arising as a valuable method to investigate neurocognitive functions shortly after birth. However, obtaining high-quality EEG data from human newborn recordings is challenging. Compared to adults and older infants, datasets are typically much shorter due to newborns' limited attentional span and much noisier due to non-stereotyped artifacts mainly caused by uncontrollable movements. We propose Newborn EEG Artifact Removal (NEAR), a pipeline for EEG artifact removal designed explicitly for human newborns. NEAR is based on two key steps: 1) A novel bad channel detection tool based on the Local Outlier Factor (LOF), a robust outlier detection algorithm; 2) A parameter calibration procedure for adapting to newborn EEG data the algorithm Artifacts Subspace Reconstruction (ASR), developed for artifact removal in mobile adult EEG. Tests on simulated data showed that NEAR outperforms existing methods in removing representative newborn non-stereotypical artifacts. NEAR was validated on two developmental populations (newborns and 9-month-old infants) recorded with two different experimental designs (frequency-tagging and ERP). Results show that NEAR artifact removal successfully reproduces established EEG responses from noisy datasets, with a higher statistical significance than the one obtained by existing artifact removal methods. The EEGLAB-based NEAR pipeline is freely available at https://github.com/vpKumaravel/NEAR.
脑电图 (EEG) 正在成为一种有价值的方法,可以在出生后不久研究神经认知功能。然而,从人类新生儿记录中获取高质量的 EEG 数据具有挑战性。与成人和年龄较大的婴儿相比,由于新生儿的注意力持续时间有限,数据集通常要短得多,并且由于主要由不可控运动引起的非定型伪影而噪音要大得多。我们提出了新生儿脑电图伪影去除 (NEAR),这是一种专门为人类新生儿设计的 EEG 伪影去除管道。NEAR 基于两个关键步骤:1)基于局部离群因子 (LOF) 的新型坏道检测工具,这是一种强大的异常值检测算法;2)一种参数校准过程,用于适应新生儿 EEG 数据的算法伪影子空间重建 (ASR),该算法是为移动成人 EEG 中的伪影去除而开发的。在模拟数据上的测试表明,NEAR 在去除代表性的新生儿非定型伪影方面优于现有方法。NEAR 在两个发展中的人群(新生儿和 9 个月大的婴儿)上进行了验证,这些人群使用两种不同的实验设计(频率标记和 ERP)进行了记录。结果表明,NEAR 伪影去除成功地从嘈杂的数据集重现了已建立的 EEG 反应,其统计显着性高于现有伪影去除方法获得的统计显着性。基于 EEGLAB 的 NEAR 管道可在 https://github.com/vpKumaravel/NEAR 上免费获得。