Suppr超能文献

EEGdenoiseNet:用于 EEG 去噪深度学习解决方案的基准数据集。

EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising.

机构信息

Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.

Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven 3001, Belgium.

出版信息

J Neural Eng. 2021 Oct 14;18(5). doi: 10.1088/1741-2552/ac2bf8.

Abstract

Deep learning (DL) networks are increasingly attracting attention across various fields, including electroencephalography (EEG) signal processing. These models provide comparable performance to that of traditional techniques. At present, however, there is a lack of well-structured and standardized datasets with specific benchmark limit the development of DL solutions for EEG denoising.Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing DL-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG.We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our results suggested that DL methods have great potential for EEG denoising even under high noise contamination.Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG denoising. The dataset and code are available athttps://github.com/ncclabsustech/EEGdenoiseNet.

摘要

深度学习(DL)网络在包括脑电图(EEG)信号处理在内的各个领域越来越受到关注。这些模型的性能可与传统技术相媲美。然而,目前缺乏具有特定基准的结构化和标准化数据集,这限制了 EEG 去噪的 DL 解决方案的发展。在这里,我们提出了 EEGdenoiseNet,这是一个基准 EEG 数据集,适用于训练和测试基于 DL 的去噪模型,以及用于跨模型的性能比较。EEGdenoiseNet 包含 4514 个清洁 EEG 段、3400 个眼动伪影段和 5598 个肌肉伪影段,允许用户用真实清洁 EEG 合成污染的 EEG 段。我们使用 EEGdenoiseNet 评估了四个经典网络(全连接网络、简单和复杂卷积网络以及递归神经网络)的去噪性能。我们的结果表明,即使在高噪声污染下,DL 方法也具有很大的 EEG 去噪潜力。通过 EEGdenoiseNet,我们希望加速基于 DL 的 EEG 去噪这一新兴领域的发展。数据集和代码可在 https://github.com/ncclabsustech/EEGdenoiseNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验