Lee Hyungkeuk, Lee NamKyung, Lee Sungjin
Media Intelligence Research Section, Electronics and Telecommunications Research Institute, 218, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.
Electronic Engineering, Dong Seoul University, 76 Bokjeong-ro, Sujeong-gu, Seongnam-si 13117, Korea.
Sensors (Basel). 2022 Sep 27;22(19):7344. doi: 10.3390/s22197344.
Due to the recent increasing utilization of deep learning models on edge devices, the industry demand for Deep Learning Model Optimization (DLMO) is also increasing. This paper derives a usage strategy of DLMO based on the performance evaluation through light convolution, quantization, pruning techniques and knowledge distillation, known to be excellent in reducing memory size and operation delay with a minimal accuracy drop. Through experiments regarding image classification, we derive possible and optimal strategies to apply deep learning into Internet of Things (IoT) or tiny embedded devices. In particular, strategies for DLMO technology most suitable for each on-device Artificial Intelligence (AI) service are proposed in terms of performance factors. In this paper, we suggest a possible solution of the most rational algorithm under very limited resource environments by utilizing mature deep learning methodologies.
由于深度学习模型在边缘设备上的使用近来不断增加,行业对深度学习模型优化(DLMO)的需求也在上升。本文通过轻量级卷积、量化、剪枝技术和知识蒸馏进行性能评估,得出了一种DLMO的使用策略,这些技术在以最小精度下降减少内存大小和操作延迟方面表现出色。通过图像分类实验,我们得出了将深度学习应用于物联网(IoT)或微型嵌入式设备的可行且最优策略。特别是,从性能因素方面提出了最适合每种设备上人工智能(AI)服务的DLMO技术策略。在本文中,我们利用成熟的深度学习方法,在资源非常有限的环境下提出了一种最合理算法的可能解决方案。