Suppr超能文献

基于雾计算的空气质量监测与预测系统的设计与增强:一种用于智能雾环境网关的优化轻量级深度学习模型

Design and Enhancement of a Fog-Enabled Air Quality Monitoring and Prediction System: An Optimized Lightweight Deep Learning Model for a Smart Fog Environmental Gateway.

作者信息

Pazhanivel Divya Bharathi, Velu Anantha Narayanan, Palaniappan Bagavathi Sivakumar

机构信息

Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

出版信息

Sensors (Basel). 2024 Aug 5;24(15):5069. doi: 10.3390/s24155069.

Abstract

Effective air quality monitoring and forecasting are essential for safeguarding public health, protecting the environment, and promoting sustainable development in smart cities. Conventional systems are cloud-based, incur high costs, lack accurate Deep Learning (DL)models for multi-step forecasting, and fail to optimize DL models for fog nodes. To address these challenges, this paper proposes a Fog-enabled Air Quality Monitoring and Prediction (FAQMP) system by integrating the Internet of Things (IoT), Fog Computing (FC), Low-Power Wide-Area Networks (LPWANs), and Deep Learning (DL) for improved accuracy and efficiency in monitoring and forecasting air quality levels. The three-layered FAQMP system includes a low-cost Air Quality Monitoring (AQM) node transmitting data via LoRa to the Fog Computing layer and then the cloud layer for complex processing. The Smart Fog Environmental Gateway (SFEG) in the FC layer introduces efficient Fog Intelligence by employing an optimized lightweight DL-based Sequence-to-Sequence (Seq2Seq) Gated Recurrent Unit (GRU) attention model, enabling real-time processing, accurate forecasting, and timely warnings of dangerous AQI levels while optimizing fog resource usage. Initially, the Seq2Seq GRU Attention model, validated for multi-step forecasting, outperformed the state-of-the-art DL methods with an average RMSE of 5.5576, MAE of 3.4975, MAPE of 19.1991%, R of 0.6926, and Theil's U1 of 0.1325. This model is then made lightweight and optimized using post-training quantization (PTQ), specifically dynamic range quantization, which reduced the model size to less than a quarter of the original, improved execution time by 81.53% while maintaining forecast accuracy. This optimization enables efficient deployment on resource-constrained fog nodes like SFEG by balancing performance and computational efficiency, thereby enhancing the effectiveness of the FAQMP system through efficient Fog Intelligence. The FAQMP system, supported by the EnviroWeb application, provides real-time AQI updates, forecasts, and alerts, aiding the government in proactively addressing pollution concerns, maintaining air quality standards, and fostering a healthier and more sustainable environment.

摘要

有效的空气质量监测和预测对于保障公众健康、保护环境以及促进智慧城市的可持续发展至关重要。传统系统基于云计算,成本高昂,缺乏用于多步预测的精确深度学习(DL)模型,并且无法针对雾节点优化DL模型。为应对这些挑战,本文提出了一种基于雾计算的空气质量监测与预测(FAQMP)系统,该系统集成了物联网(IoT)、雾计算(FC)、低功耗广域网(LPWAN)和深度学习(DL),以提高空气质量监测和预测的准确性和效率。三层的FAQMP系统包括一个低成本的空气质量监测(AQM)节点,该节点通过LoRa将数据传输到雾计算层,然后再传输到云层进行复杂处理。雾计算层中的智能雾环境网关(SFEG)通过采用优化的基于轻量级深度学习的序列到序列(Seq2Seq)门控循环单元(GRU)注意力模型引入高效的雾智能,实现实时处理、准确预测以及对危险空气质量指数(AQI)水平的及时预警,同时优化雾资源使用。最初,经过多步预测验证的Seq2Seq GRU注意力模型优于当前最先进的深度学习方法,平均均方根误差(RMSE)为5.5576,平均绝对误差(MAE)为3.4975,平均绝对百分比误差(MAPE)为19.1991%,相关系数(R)为0.6926,泰尔不平等系数(Theil's U1)为0.1325。然后,使用训练后量化(PTQ),特别是动态范围量化,对该模型进行轻量化和优化,这将模型大小减小到不到原来的四分之一,在保持预测准确性的同时将执行时间提高了81.53%。这种优化通过平衡性能和计算效率,能够在诸如SFEG等资源受限的雾节点上进行高效部署,从而通过高效的雾智能提高FAQMP系统的有效性。由EnviroWeb应用程序支持的FAQMP系统提供实时AQI更新、预测和警报,帮助政府积极应对污染问题、维持空气质量标准并营造更健康、更可持续的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/11315033/795407c5d528/sensors-24-05069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验