Suppr超能文献

基于金属有机框架的异质结构纳米流体器件实现可切换离子电流饱和状态

Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks.

作者信息

Laucirica Gregorio, Allegretto Juan A, Wagner Michael F, Toimil-Molares Maria Eugenia, Trautmann Christina, Rafti Matías, Marmisollé Waldemar, Azzaroni Omar

机构信息

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina.

GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany.

出版信息

Adv Mater. 2022 Dec;34(51):e2207339. doi: 10.1002/adma.202207339. Epub 2022 Nov 11.

Abstract

The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.

摘要

径迹蚀刻膜的使用能够进一步微调传输机制,从而使其可用于(生物)传感和能量收集等应用。最近,金属有机框架(MOF)已与这类膜相结合,以进一步提升其潜力。在此,我们提出创建一种用UiO-66 MOF修饰的单径迹蚀刻纳米通道。通过界面生长法,UiO-66限制合成能够完全且平滑地填充纳米通道,但其结构孔隙率会在通道的轴向坐标上形成异质结构。MOF异质结构使纳米流体装置的传输机制发生显著变化。特别是,UiO-66的微观和介观结构所提供的曲折度加上其带电状态,导致离子电子输出的特征是跨膜电压超过0.3 V时离子电流饱和不对称。值得注意的是,通过改变介质的pH值可以轻松且可逆地调节这种行为,并且在很宽的KCl浓度范围内都能保持。此外,研究发现,仅考虑UiO-66的固有微孔性无法解释修饰纳米通道的功能,而是MOF生长过程中产生的结构孔隙率起着核心和主导作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验