Suppr超能文献

睡眠需求依赖性的功能连接变化促进了稳态睡眠驱动的传递。

Sleep need-dependent changes in functional connectivity facilitate transmission of homeostatic sleep drive.

机构信息

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Curr Biol. 2022 Nov 21;32(22):4957-4966.e5. doi: 10.1016/j.cub.2022.09.048. Epub 2022 Oct 13.

Abstract

How the homeostatic drive for sleep accumulates over time and is released remains poorly understood. In Drosophila, we previously identified the R5 ellipsoid body (EB) neurons as putative sleep drive neurons and recently described a mechanism by which astrocytes signal to these cells to convey sleep need. Here, we examine the mechanisms acting downstream of the R5 neurons to promote sleep. EM connectome data demonstrate that R5 neurons project to EPG neurons. Broad thermogenetic activation of EPG neurons promotes sleep, whereas inhibiting these cells reduces homeostatic sleep rebound. Perforated patch-clamp recordings reveal that EPG neurons exhibit elevated spontaneous firing following sleep deprivation, which likely depends on an increase in extrinsic excitatory inputs. Our data suggest that cholinergic R5 neurons participate in the homeostatic regulation of sleep, and epistasis experiments indicate that the R5 neurons act upstream of EPG neurons to promote sleep. Finally, we show that the physical and functional connectivity between the R5 and EPG neurons increases with greater sleep need. Importantly, dual patch-clamp recordings demonstrate that activating R5 neurons induces cholinergic-dependent excitatory postsynaptic responses in EPG neurons. Moreover, sleep loss triggers an increase in the amplitude of these responses, as well as in the proportion of EPG neurons that respond. Together, our data support a model whereby sleep drive strengthens the functional connectivity between R5 and EPG neurons, triggering sleep when a sufficient number of EPG neurons are activated. This process could enable the proper timing of the accumulation and release of sleep drive.

摘要

睡眠的内稳态驱动力如何随时间积累并释放仍知之甚少。在果蝇中,我们先前鉴定出 R5 椭圆形体 (EB) 神经元为潜在的睡眠驱动力神经元,并最近描述了一种星形胶质细胞向这些细胞发出信号以传递睡眠需求的机制。在这里,我们研究了作用于 R5 神经元下游以促进睡眠的机制。EM 连接组学数据表明,R5 神经元投射到 EPG 神经元。广泛的热遗传激活 EPG 神经元会促进睡眠,而抑制这些细胞会减少内稳态睡眠反弹。穿孔贴附记录显示,EPG 神经元在睡眠剥夺后表现出自发放电增加,这可能依赖于外在兴奋性输入的增加。我们的数据表明,胆碱能 R5 神经元参与睡眠的内稳态调节,并且上位性实验表明,R5 神经元在上游作用于 EPG 神经元以促进睡眠。最后,我们表明 R5 和 EPG 神经元之间的物理和功能连接随着睡眠需求的增加而增加。重要的是,双贴附记录表明,激活 R5 神经元会在 EPG 神经元中诱导胆碱能依赖性兴奋性突触后反应。此外,睡眠剥夺会触发这些反应幅度的增加,以及响应的 EPG 神经元比例增加。总的来说,我们的数据支持这样一种模型,即睡眠驱动力增强了 R5 和 EPG 神经元之间的功能连接,当足够数量的 EPG 神经元被激活时触发睡眠。这个过程可以使睡眠驱动力的积累和释放的时间恰到好处。

相似文献

4
Astroglial Calcium Signaling Encodes Sleep Need in Drosophila.果蝇星形胶质细胞钙信号编码睡眠需求。
Curr Biol. 2021 Jan 11;31(1):150-162.e7. doi: 10.1016/j.cub.2020.10.012. Epub 2020 Nov 12.

引用本文的文献

8
Fly into tranquility: GABA's role in Drosophila sleep.飞进宁静:GABA 在果蝇睡眠中的作用。
Curr Opin Insect Sci. 2024 Aug;64:101219. doi: 10.1016/j.cois.2024.101219. Epub 2024 Jun 5.

本文引用的文献

1
Inputs to the Sleep Homeostat Originate Outside the Brain.睡眠稳态调节器的输入源自大脑之外。
J Neurosci. 2022 Jul 20;42(29):5695-5704. doi: 10.1523/JNEUROSCI.2113-21.2022.
3
Integration of sleep homeostasis and navigation in Drosophila.果蝇睡眠内稳态与导航的整合。
PLoS Comput Biol. 2021 Jul 12;17(7):e1009088. doi: 10.1371/journal.pcbi.1009088. eCollection 2021 Jul.
4
Astroglial Calcium Signaling Encodes Sleep Need in Drosophila.果蝇星形胶质细胞钙信号编码睡眠需求。
Curr Biol. 2021 Jan 11;31(1):150-162.e7. doi: 10.1016/j.cub.2020.10.012. Epub 2020 Nov 12.
7
Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila.果蝇突触前活性区可塑性编码睡眠需求。
Curr Biol. 2020 Mar 23;30(6):1077-1091.e5. doi: 10.1016/j.cub.2020.01.019. Epub 2020 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验