Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
Curr Biol. 2022 Nov 21;32(22):4957-4966.e5. doi: 10.1016/j.cub.2022.09.048. Epub 2022 Oct 13.
How the homeostatic drive for sleep accumulates over time and is released remains poorly understood. In Drosophila, we previously identified the R5 ellipsoid body (EB) neurons as putative sleep drive neurons and recently described a mechanism by which astrocytes signal to these cells to convey sleep need. Here, we examine the mechanisms acting downstream of the R5 neurons to promote sleep. EM connectome data demonstrate that R5 neurons project to EPG neurons. Broad thermogenetic activation of EPG neurons promotes sleep, whereas inhibiting these cells reduces homeostatic sleep rebound. Perforated patch-clamp recordings reveal that EPG neurons exhibit elevated spontaneous firing following sleep deprivation, which likely depends on an increase in extrinsic excitatory inputs. Our data suggest that cholinergic R5 neurons participate in the homeostatic regulation of sleep, and epistasis experiments indicate that the R5 neurons act upstream of EPG neurons to promote sleep. Finally, we show that the physical and functional connectivity between the R5 and EPG neurons increases with greater sleep need. Importantly, dual patch-clamp recordings demonstrate that activating R5 neurons induces cholinergic-dependent excitatory postsynaptic responses in EPG neurons. Moreover, sleep loss triggers an increase in the amplitude of these responses, as well as in the proportion of EPG neurons that respond. Together, our data support a model whereby sleep drive strengthens the functional connectivity between R5 and EPG neurons, triggering sleep when a sufficient number of EPG neurons are activated. This process could enable the proper timing of the accumulation and release of sleep drive.
睡眠的内稳态驱动力如何随时间积累并释放仍知之甚少。在果蝇中,我们先前鉴定出 R5 椭圆形体 (EB) 神经元为潜在的睡眠驱动力神经元,并最近描述了一种星形胶质细胞向这些细胞发出信号以传递睡眠需求的机制。在这里,我们研究了作用于 R5 神经元下游以促进睡眠的机制。EM 连接组学数据表明,R5 神经元投射到 EPG 神经元。广泛的热遗传激活 EPG 神经元会促进睡眠,而抑制这些细胞会减少内稳态睡眠反弹。穿孔贴附记录显示,EPG 神经元在睡眠剥夺后表现出自发放电增加,这可能依赖于外在兴奋性输入的增加。我们的数据表明,胆碱能 R5 神经元参与睡眠的内稳态调节,并且上位性实验表明,R5 神经元在上游作用于 EPG 神经元以促进睡眠。最后,我们表明 R5 和 EPG 神经元之间的物理和功能连接随着睡眠需求的增加而增加。重要的是,双贴附记录表明,激活 R5 神经元会在 EPG 神经元中诱导胆碱能依赖性兴奋性突触后反应。此外,睡眠剥夺会触发这些反应幅度的增加,以及响应的 EPG 神经元比例增加。总的来说,我们的数据支持这样一种模型,即睡眠驱动力增强了 R5 和 EPG 神经元之间的功能连接,当足够数量的 EPG 神经元被激活时触发睡眠。这个过程可以使睡眠驱动力的积累和释放的时间恰到好处。