Gao Lei, Liu Lan, Lv Ai-Ping, Fu Lin, Lian Zheng-Han, Nunoura Takuro, Hedlund Brian P, Xu Qing-Yu, Wu Dildar, Yang Jian, Ali Mukhtiar, Li Meng-Meng, Liu Yong-Hong, Antunes André, Jiang Hong-Chen, Cheng Lei, Jiao Jian-Yu, Li Wen-Jun, Fang Bao-Zhu
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae147.
Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.
酸微菌纲在自然界中广泛分布,据推测通过卡尔文-本森-巴斯姆(CBB)循环进行自养。然而,缺乏酸微菌纲化学无机自养的直接证据。在此,我们报道了从一个盐湖中富集出的化学无机自养菌,以及随后对一种化学无机自养菌——黄褐盐湖丝菌EGI L10123T的分离和鉴定,该菌属于酸微菌纲的一个新科。尽管菌株EGI L10123T是自养菌,但其基因组以及来自富集培养物的酸微菌纲宏基因组组装基因组均未编码CBB循环所需的基因。相反,基因组、转录组、酶学和稳定同位素探测数据表明,逆向氧化三羧酸(roTCA)循环与以硫化物作为电子供体的氧化作用有关。酸微菌纲的系统发育分析和祖先特征重建表明,关键的CBB基因rbcL是通过多次水平基因转移事件从不同的微生物类群中获得的。相比之下,负责依赖硫化物或氢气的roTCA碳固定的基因在现存酸微菌纲的最后一个共同祖先中就已经存在。这些发现意味着酸微菌纲中存在roTCA碳固定的可能性以及酸微菌纲的生态重要性。未来有必要进行进一步研究,以确认这些特征是否在整个类群中真正广泛存在。