Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China.
Luo Yang Branch of Institute of Computing Technology, Chinese Academy of Sciences, Luoyang, China.
Appl Environ Microbiol. 2024 May 21;90(5):e0014524. doi: 10.1128/aem.00145-24. Epub 2024 Apr 5.
The bacterium is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in , it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of under 3.1, 3.7, and 4.3 M Na conditions compared to 2.5 M Na condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of . The mRNA level of key proteins and the intracellular content of compatible solutes and K support this conclusion. Specifically, employs the glycine betaine ABC transporters (Opu and ProU families), Na/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in . Additionally, the upregulation of Na/ K/ H transporters facilitates the maintenance of intracellular K concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, exhibits cytoplasmic acidification in response to high Na concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the class in response to long-term salinity stress.
这种细菌是一种极端嗜盐的嗜热碱菌,可以在高盐度(3.3-3.9 M Na)、碱性 pH(9.5)和高温(53°C)条件下茁壮成长。为了了解 在盐适应中的分子机制,有必要从分子基础上研究蛋白质、mRNA 和关键代谢物水平。基于与 2.5 M Na 条件相比, 在 3.1、3.7 和 4.3 M Na 条件下的蛋白质组谱分析,我们发现 采用了一种混合策略,结合“相容溶质”和“盐进”机制,用于 在长期盐适应过程中的渗透压调节。关键蛋白质的 mRNA 水平和相容溶质和 K 的细胞内含量支持这一结论。具体而言, 利用甘氨酸甜菜碱 ABC 转运蛋白(Opu 和 ProU 家族)、Na/溶质转运蛋白(SSS 家族)和谷氨酸和脯氨酸合成途径来适应高盐度。相容溶质的细胞内含量,包括甘氨酸甜菜碱、谷氨酸和脯氨酸,随着 的盐度升高而增加。此外,Na/K/H 转运蛋白的上调有助于维持细胞内 K 浓度,确保在不同盐度下细胞离子平衡。此外, 在高 Na 浓度下表现出细胞质酸化。上调蛋白的中值等电点随盐度升高而降低。氨基酸代谢、碳水化合物和能量代谢、膜转运和细菌趋化性活动有助于 在高盐胁迫下的适应性。这项研究提供了新的数据,支持进一步阐明 在多种极端条件下的复杂适应机制。