Applied Artificial Intelligence (2AI) Research Lab Computer Science Department, University of South Dakota, Vermillion, SD, 57069, USA.
National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
J Med Syst. 2022 Oct 15;46(11):82. doi: 10.1007/s10916-022-01870-8.
There has been an explosive growth in research over the last decade exploring machine learning techniques for analyzing chest X-ray (CXR) images for screening cardiopulmonary abnormalities. In particular, we have observed a strong interest in screening for tuberculosis (TB). This interest has coincided with the spectacular advances in deep learning (DL) that is primarily based on convolutional neural networks (CNNs). These advances have resulted in significant research contributions in DL techniques for TB screening using CXR images. We review the research studies published over the last five years (2016-2021). We identify data collections, methodical contributions, and highlight promising methods and challenges. Further, we discuss and compare studies and identify those that offer extension beyond binary decisions for TB, such as region-of-interest localization. In total, we systematically review 54 peer-reviewed research articles and perform meta-analysis.
在过去的十年中,研究人员在利用机器学习技术分析胸部 X 光(CXR)图像以筛查心肺异常方面取得了爆炸式的增长。特别是,我们观察到对筛查结核病(TB)的强烈兴趣。这种兴趣与深度学习(DL)的显著进步相吻合,DL 主要基于卷积神经网络(CNNs)。这些进展使得使用 CXR 图像进行 TB 筛查的 DL 技术取得了重大的研究贡献。我们回顾了过去五年(2016-2021 年)发表的研究。我们确定了数据集、方法贡献,并突出了有前途的方法和挑战。此外,我们还讨论和比较了研究,并确定了那些不仅仅提供 TB 二进制决策的扩展,例如感兴趣区域定位。总的来说,我们系统地回顾了 54 篇同行评议的研究文章,并进行了荟萃分析。
Cochrane Database Syst Rev. 2022-3-23
Cochrane Database Syst Rev. 2022-8-3
Cochrane Database Syst Rev. 2022-4-26
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2025-6-16
Bioengineering (Basel). 2025-6-9
J Med Internet Res. 2025-3-7
Breathe (Sheff). 2024-12-10
Digit Health. 2024-8-14
Pneumonia (Nathan). 2024-7-5
Diagnostics (Basel). 2024-4-30
IEEE Trans Artif Intell. 2020-9-2
Diagnostics (Basel). 2021-5-7
Front Artif Intell. 2020-10-5