文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在肺结核 X 射线筛查中的应用进展:近 5 年回顾。

Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review.

机构信息

Applied Artificial Intelligence (2AI) Research Lab Computer Science Department, University of South Dakota, Vermillion, SD, 57069, USA.

National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

出版信息

J Med Syst. 2022 Oct 15;46(11):82. doi: 10.1007/s10916-022-01870-8.


DOI:10.1007/s10916-022-01870-8
PMID:36241922
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9568934/
Abstract

There has been an explosive growth in research over the last decade exploring machine learning techniques for analyzing chest X-ray (CXR) images for screening cardiopulmonary abnormalities. In particular, we have observed a strong interest in screening for tuberculosis (TB). This interest has coincided with the spectacular advances in deep learning (DL) that is primarily based on convolutional neural networks (CNNs). These advances have resulted in significant research contributions in DL techniques for TB screening using CXR images. We review the research studies published over the last five years (2016-2021). We identify data collections, methodical contributions, and highlight promising methods and challenges. Further, we discuss and compare studies and identify those that offer extension beyond binary decisions for TB, such as region-of-interest localization. In total, we systematically review 54 peer-reviewed research articles and perform meta-analysis.

摘要

在过去的十年中,研究人员在利用机器学习技术分析胸部 X 光(CXR)图像以筛查心肺异常方面取得了爆炸式的增长。特别是,我们观察到对筛查结核病(TB)的强烈兴趣。这种兴趣与深度学习(DL)的显著进步相吻合,DL 主要基于卷积神经网络(CNNs)。这些进展使得使用 CXR 图像进行 TB 筛查的 DL 技术取得了重大的研究贡献。我们回顾了过去五年(2016-2021 年)发表的研究。我们确定了数据集、方法贡献,并突出了有前途的方法和挑战。此外,我们还讨论和比较了研究,并确定了那些不仅仅提供 TB 二进制决策的扩展,例如感兴趣区域定位。总的来说,我们系统地回顾了 54 篇同行评议的研究文章,并进行了荟萃分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9568934/62422823e06b/10916_2022_1870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9568934/a93e9a583f72/10916_2022_1870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9568934/62422823e06b/10916_2022_1870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9568934/a93e9a583f72/10916_2022_1870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9568934/62422823e06b/10916_2022_1870_Fig2_HTML.jpg

相似文献

[1]
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review.

J Med Syst. 2022-10-15

[2]
Symptom- and chest-radiography screening for active pulmonary tuberculosis in HIV-negative adults and adults with unknown HIV status.

Cochrane Database Syst Rev. 2022-3-23

[3]
The COVID-19 epidemic analysis and diagnosis using deep learning: A systematic literature review and future directions.

Comput Biol Med. 2022-2

[4]
Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality.

Cochrane Database Syst Rev. 2022-8-3

[5]
Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views.

Cochrane Database Syst Rev. 2022-4-26

[6]
A systematic review and meta-analysis of artificial intelligence software for tuberculosis diagnosis using chest X-ray imaging.

J Thorac Dis. 2025-5-30

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis.

J Med Internet Res. 2021-9-21

[9]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

[10]
Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review.

J Neural Eng. 2022-10-19

引用本文的文献

[1]
Active and Inactive Tuberculosis Classification Using Convolutional Neural Networks with MLP-Mixer.

Bioengineering (Basel). 2025-6-9

[2]
Diagnostic Performance of Artificial Intelligence-Based Methods for Tuberculosis Detection: Systematic Review.

J Med Internet Res. 2025-3-7

[3]
Using the Regression Slope of Training Loss to Optimize Chest X-ray Generation in Deep Convolutional Generative Adversarial Networks.

Cureus. 2025-1-13

[4]
Early user perspectives on using computer-aided detection software for interpreting chest X-ray images to enhance access and quality of care for persons with tuberculosis.

BMC Glob Public Health. 2023-12-21

[5]
Artificial intelligence in tuberculosis: a new ally in disease control.

Breathe (Sheff). 2024-12-10

[6]
The two-stage detection-after-segmentation model improves the accuracy of identifying subdiaphragmatic lesions.

Sci Rep. 2024-10-25

[7]
A hybrid approach for automatic segmentation and classification to detect tuberculosis.

Digit Health. 2024-8-14

[8]
Early detection of tuberculosis: a systematic review.

Pneumonia (Nathan). 2024-7-5

[9]
Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images.

Diagnostics (Basel). 2024-4-30

[10]
Detection of COVID-19, pneumonia, and tuberculosis from radiographs using AI-driven knowledge distillation.

Heliyon. 2024-2-28

本文引用的文献

[1]
Leveraging Data Science to Combat COVID-19: A Comprehensive Review.

IEEE Trans Artif Intell. 2020-9-2

[2]
DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs.

PLoS One. 2022

[3]
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings.

Diagnostics (Basel). 2021-5-7

[4]
Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models.

Front Artif Intell. 2020-10-5

[5]
Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors.

Phys Eng Sci Med. 2021-3

[6]
Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study.

JMIR Med Inform. 2020-12-7

[7]
Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs.

PLoS One. 2020-11-12

[8]
Refining dataset curation methods for deep learning-based automated tuberculosis screening.

J Thorac Dis. 2020-9

[9]
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV.

NPJ Digit Med. 2020-9-9

[10]
Computer-Aided System for the Detection of Multicategory Pulmonary Tuberculosis in Radiographs.

J Healthc Eng. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索