文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶介导的病原体检测与控制策略的最新进展。

Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control.

机构信息

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.

出版信息

Int J Mol Sci. 2023 Aug 28;24(17):13342. doi: 10.3390/ijms241713342.


DOI:10.3390/ijms241713342
PMID:37686145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10487713/
Abstract

Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.

摘要

病原体的检测和控制一直是医学和公共卫生领域面临的艰巨挑战。本文综述强调了纳米酶作为新兴仿生酶的潜力,它们在有效应对这些挑战方面具有广阔前景。文中介绍了纳米酶的关键特征和优势,包括其与天然酶相当的催化活性、增强的稳定性和可靠性、成本效益以及简便的制备方法。随后,本文详细探讨了纳米酶在病原体检测中的具体应用。这包括将其用作生物传感器,以实现对各种病原体(包括细菌、病毒和疟原虫)的快速和敏感识别。此外,本文还探讨了利用纳米酶进行病原体控制的策略,例如调节活性氧(ROS)、HOBr/Cl 调节以及清除细胞外 DNA 以阻止病原体生长和传播。本文通过大量具体实例和案例研究强调了纳米酶在病原体检测和控制方面的巨大潜力。作者强调了纳米酶在病原体检测方面的效率、速度和特异性,采用了多种策略。他们还展示了纳米酶在阻止病原体生长和传播方面的可行性。这些利用纳米酶的创新方法有望为早期疾病诊断、治疗和预防提供新的选择。通过全面论述纳米酶的特征和优势以及多样化的应用方法,本文为纳米酶技术的进一步研究和开发提供了重要参考和指导。期望这些进展将为加强疾病控制措施和改善公共卫生成果做出重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/ea4a87ed4a4b/ijms-24-13342-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/c2f2d4849a88/ijms-24-13342-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/7fb3e0b79a5c/ijms-24-13342-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/bd6df2894719/ijms-24-13342-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/d4a81efac5e1/ijms-24-13342-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/bf9cb49f71f5/ijms-24-13342-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/393a5aa7388d/ijms-24-13342-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/6fd0af85faf0/ijms-24-13342-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/340d42d9300c/ijms-24-13342-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/1c7b9759d698/ijms-24-13342-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/fe9977cd0100/ijms-24-13342-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/341118b1fbd7/ijms-24-13342-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/3ed32a0aeaa7/ijms-24-13342-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/ea4a87ed4a4b/ijms-24-13342-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/c2f2d4849a88/ijms-24-13342-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/7fb3e0b79a5c/ijms-24-13342-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/bd6df2894719/ijms-24-13342-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/d4a81efac5e1/ijms-24-13342-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/bf9cb49f71f5/ijms-24-13342-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/393a5aa7388d/ijms-24-13342-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/6fd0af85faf0/ijms-24-13342-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/340d42d9300c/ijms-24-13342-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/1c7b9759d698/ijms-24-13342-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/fe9977cd0100/ijms-24-13342-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/341118b1fbd7/ijms-24-13342-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/3ed32a0aeaa7/ijms-24-13342-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd5/10487713/ea4a87ed4a4b/ijms-24-13342-g013.jpg

相似文献

[1]
Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control.

Int J Mol Sci. 2023-8-28

[2]
Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens.

Int J Mol Sci. 2022-4-22

[3]
Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays.

Food Chem. 2024-7-30

[4]
Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety.

Foods. 2022-2-14

[5]
Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.

Acc Chem Res. 2019-7-5

[6]
Nanozyme-based electrochemical biosensors for disease biomarker detection.

Analyst. 2020-7-7

[7]
Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges.

Adv Healthc Mater. 2025-3

[8]
The recent development of nanozymes for food quality and safety detection.

J Mater Chem B. 2022-3-2

[9]
Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers.

Small Methods. 2023-11

[10]
Introducing molecular imprinting onto nanozymes: toward selective catalytic analysis.

Anal Bioanal Chem. 2024-11

引用本文的文献

[1]
Recent Advances in Metal-Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications.

Biosensors (Basel). 2025-7-7

[2]
Freeze-Driven Adsorption of Oligonucleotides with polyA-Anchors on Au@Pt Nanozyme.

Int J Mol Sci. 2024-9-20

[3]
Photothermal Hydrogel Composites Featuring G4-Carbon Nanomaterial Networks for Inhibition.

ACS Omega. 2024-3-29

[4]
The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria.

Int J Mol Sci. 2023-10-23

本文引用的文献

[1]
Opt-out HIV testing in the UK.

Lancet HIV. 2023-6

[2]
Enzyme-Responsive Zr-Based Metal-Organic Frameworks for Controlled Drug Delivery: Taking Advantage of Clickable PEG-Phosphate Ligands.

ACS Appl Mater Interfaces. 2023-6-14

[3]
Coupling Bifunctional Nanozyme-Mediated Catalytic Signal Amplification and Label-Free SERS with Immunoassays for Ultrasensitive Detection of Pathogens in Milk Samples.

Anal Chem. 2023-4-18

[4]
Enhanced Peroxidase-Like and Antibacterial Activity of Ir-CoatedPd-Pt Nanodendrites as Nanozyme.

Bioinorg Chem Appl. 2023-2-15

[5]
Biomineralization-inspired artificial clickase for portable click SERS immunoassay of Salmonella enterica serovar Paratyphi B in foods.

Food Chem. 2023-7-1

[6]
Selective laser welding in liquid: A strategy for preparation of high-antibacterial activity nanozyme against Staphylococcus aureus.

J Adv Res. 2023-2

[7]
Colorimetric platform based on synergistic effect between bacteriophage and AuPt nanozyme for determination of Yersinia pseudotuberculosis.

Mikrochim Acta. 2023-1-28

[8]
Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review.

Biosensors (Basel). 2022-12-31

[9]
Joint-detection of Salmonella typhimurium and Escherichia coli O157:H7 by an immersible amplification dip-stick immunoassay.

Biosens Bioelectron. 2023-3-15

[10]
A high-efficient and stable artificial superoxide dismutase based on functionalized melanin nanoparticles from cuttlefish ink for food preservation.

Food Res Int. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索