Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
Nat Commun. 2022 Oct 15;13(1):6101. doi: 10.1038/s41467-022-33704-z.
The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.
受阻扩散模型假设信号分子在胚胎中的运动受到组织几何形状和结合介导的阻碍的影响,但这些影响尚未在体内得到直接证明。在这里,我们使用反射式光片显微镜可视化活体斑马鱼胚胎中单个激活剂-抑制剂信号对 Nodal 和 Lefty 的分子的细胞外运动和结合。我们观察到分子的扩散系数在细胞外腔中很高,而在细胞-细胞界面处的迁移率降低且结合分数较高。出人意料的是,分子仍然在腔室中积累,我们通过基于代理的模拟将其归因于细胞外空间的几何形状。我们还发现 Nodal 的结合分数大于 Lefty,并且表现出数十秒的结合时间。总之,我们的测量和模拟为受阻扩散模型提供了直接支持,并为导致宏观信号弥散的纳米到微米尺度机制提供了新的见解。