Suppr超能文献

有效的体内结合能景观说明了RBPJ-DNA结合的动力学稳定性。

Effective in vivo binding energy landscape illustrates kinetic stability of RBPJ-DNA binding.

作者信息

Huynh Duyen, Hoffmeister Philipp, Friedrich Tobias, Zhang Kefan, Bartkuhn Marek, Ferrante Francesca, Giaimo Benedetto Daniele, Kovall Rhett A, Borggrefe Tilman, Oswald Franz, Gebhardt J Christof M

机构信息

Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.

Clinic of Internal Medicine I, University Medical Center Ulm, Ulm, Germany.

出版信息

Nat Commun. 2025 Feb 1;16(1):1259. doi: 10.1038/s41467-025-56515-4.

Abstract

Transcription factors (TFs) such as RBPJ in Notch signaling bind to specific DNA sequences to regulate transcription. How TF-DNA binding kinetics and cofactor interactions modulate gene regulation is mostly unknown. We determine the binding kinetics, transcriptional activity, and genome-wide chromatin occupation of RBPJ and mutant variants by live-cell single-molecule tracking, reporter assays, and ChIP-Seq. Importantly, the search time of RBPJ exceeds its residence time, indicating kinetic rather than thermodynamic binding stability. Impaired RBPJ-DNA binding as in Adams-Oliver-Syndrome affect both target site association and dissociation, while impaired cofactor binding mainly alters association and unspecific binding. Moreover, our data point to the possibility that cofactor binding contributes to target site specificity. Findings for other TFs comparable to RBPJ indicate that kinetic rather than thermodynamic DNA binding stability might prevail in vivo. We propose an effective in vivo binding energy landscape of TF-DNA interactions as instructive visualization of binding kinetics and mutation-induced changes.

摘要

转录因子(TFs),如Notch信号通路中的RBPJ,可与特定DNA序列结合以调控转录。TF与DNA的结合动力学以及辅助因子相互作用如何调节基因调控,目前大多尚不清楚。我们通过活细胞单分子追踪、报告基因检测和染色质免疫沉淀测序(ChIP-Seq)来确定RBPJ及其突变变体的结合动力学、转录活性和全基因组染色质占据情况。重要的是,RBPJ的搜索时间超过其停留时间,这表明其结合稳定性取决于动力学而非热力学。如在亚当斯-奥利弗综合征中所见,RBPJ与DNA的结合受损会影响靶位点的结合和解离,而辅助因子结合受损则主要改变结合和非特异性结合。此外,我们的数据表明辅助因子结合可能有助于靶位点特异性。与RBPJ类似的其他TF的研究结果表明,在体内,DNA结合稳定性可能取决于动力学而非热力学。我们提出了一种TF-DNA相互作用的有效体内结合能景观,作为结合动力学和突变诱导变化的指导性可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e3a/11787368/5731d5a105dc/41467_2025_56515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验