Suppr超能文献

胍基修饰的纳米结构用于精准声动力学-催化联合治疗耐甲氧西林金黄色葡萄球菌感染性骨髓炎。

Guanidinium-Decorated Nanostructure for Precision Sonodynamic-Catalytic Therapy of MRSA-Infected Osteomyelitis.

机构信息

Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

Department of Surgery of Traditional Chinese Medicine, Tianjin Hospital, Tianjin, 300211, P. R. China.

出版信息

Adv Mater. 2022 Dec;34(50):e2206646. doi: 10.1002/adma.202206646. Epub 2022 Nov 4.

Abstract

Osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilm infection is difficult to eradicate and can even be life-threatening. Given that the infection is persistent and deep-seated in the bone tissue, controlled and efficient treatment of osteomyelitis remains challenging. Herein, an activatable nanostructure (Au/TNT@PG) is presented for synergistic sonodynamic-catalytic therapy of MRSA-infected osteomyelitis. The Au/TNT@PG backbone is obtained by conjugating a guanidinium-rich polymer (PG), a component that penetrates the biofilm matrix, onto ultrasound (US)-absorbing gold-doped titanate nanotubes (Au/TNTs). Under deep-penetrating US irradiation, the nanocomposite generates O for sonodynamic therapy and catalyzes the decomposition of endogenous H O into toxic •OH in the acidic infection microenvironment for catalytic therapy, leading to bacterial cell death. Its robust antibacterial effectiveness is attributable to its bacteria-capturing ability, the biofilm penetrability of positively charged guanidinium, and the subsequent synergistic effect of sonodynamic-catalytic action of Au/TNT. Such a remotely controlled approach potentiates the polarization of macrophages to M2-type while suppressing the M1-type, leading to topical inflammation resolution and enhanced osteoblast proliferation and differentiation to inhibit bone loss. Therefore, this study provides a generic nanotherapeutic approach for efficient sonodynamic-catalytic therapy with respect to osteomyelitis.

摘要

耐甲氧西林金黄色葡萄球菌 (MRSA) 生物膜感染引起的骨髓炎很难根除,甚至可能危及生命。鉴于感染在骨组织中持续存在且根深蒂固,骨髓炎的有效控制和治疗仍然具有挑战性。在此,提出了一种可激活的纳米结构 (Au/TNT@PG),用于协同声动力-催化治疗 MRSA 感染性骨髓炎。Au/TNT@PG 骨架是通过将富含胍的聚合物 (PG) 与超声 (US) 吸收的金掺杂钛酸盐纳米管 (Au/TNTs) 偶联而获得的。在深穿透 US 照射下,纳米复合材料产生 O 用于声动力治疗,并在酸性感染微环境中催化内源性 H O 分解为有毒的 •OH 用于催化治疗,导致细菌细胞死亡。其强大的抗菌效果归因于其细菌捕获能力、带正电荷胍的生物膜穿透能力以及 Au/TNT 的声动力-催化作用的协同效应。这种远程控制方法增强了巨噬细胞向 M2 型极化,同时抑制了 M1 型,从而导致局部炎症消退和增强成骨细胞增殖和分化以抑制骨质流失。因此,这项研究为高效声动力-催化治疗骨髓炎提供了一种通用的纳米治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验