Suppr超能文献

广义同步定位与地图构建(G-SLAM)作为自然与人工智能的统一框架:迈向对海马体/内嗅皮层系统及高级认知原理的逆向工程。

Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition.

作者信息

Safron Adam, Çatal Ozan, Verbelen Tim

机构信息

Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Cognitive Science Program, Indiana University, Bloomington, IN, United States.

出版信息

Front Syst Neurosci. 2022 Sep 30;16:787659. doi: 10.3389/fnsys.2022.787659. eCollection 2022.

Abstract

Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.

摘要

同时定位与地图构建(SLAM)是自主实体系统面临的一个基本问题,在进化过程中,海马体/内嗅系统(H/E-S)已针对该问题进行了优化。我们基于自由能原理和主动推理(FEP-AI)框架内的潜变量生成建模,开发了一种受生物启发的SLAM架构,该架构能使移动机器人实现灵活的导航与规划。我们主要致力于逆向工程H/E-S的“设计”特性,但在此我们思考机器人学中的SLAM原理如何能帮助我们更好地理解神经系统和涌现的心智。在回顾了LatentSLAM及该控制架构的显著特征后,我们思考H/E-S如何不仅在物理导航方面,而且在被理解为广义同时定位与地图构建(G-SLAM)的高级认知方面实现这些功能特性。我们聚焦于闭环、图松弛和节点复制,认为它们是特别有影响力的架构特征,表明这些计算现象可能有助于理解认知洞察(作为原因果推理)、顺应(作为融入现有图式)和同化(作为类别形成)。所有这些操作同样可以在多个抽象层次上用结构/类别学习来描述。然而,在此我们采用生态合理性视角,将H/E-S的功能描述为在具体和抽象假设空间内协调SLAM过程。在这个导航/搜索过程中,同化与顺应之间的适应性认知平衡涉及在探索与利用之间权衡;这种动态平衡在FEP-AI中可能近乎最优地实现,其中由预期自由能目标函数控制的系统自然地平衡模型的简单性和准确性。在结构学习方面,这样的平衡将涉及构建既不过于包容也不过于排斥的模型和类别。我们提出这些(广义的)SLAM现象可能是个体内部和个体之间认知中一些最有影响力的变异来源,这表明H/E-S功能的调节因子可能潜在地阐明它们作为基本控制论控制参数的适应性意义。最后,我们讨论理解H/E-S对G-SLAM的贡献如何能为高级认知及其在人工智能中的潜在实现提供一个统一框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff30/9563348/40927114913b/fnsys-16-787659-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验