Suppr超能文献

2019冠状病毒病与科学出版系统:增长、开放获取与科学领域

COVID-19 and the scientific publishing system: growth, open access and scientific fields.

作者信息

Nane Gabriela F, Robinson-Garcia Nicolas, van Schalkwyk François, Torres-Salinas Daniel

机构信息

Delft Institute of Applied Mathematics (DIAM), Delft University of Technology, Delft, Netherlands.

EC3 Research Group, Information and Communication Studies Department, University of Granada, Granada, Spain.

出版信息

Scientometrics. 2023;128(1):345-362. doi: 10.1007/s11192-022-04536-x. Epub 2022 Oct 10.

Abstract

UNLABELLED

We model the growth of scientific literature related to COVID-19 and forecast the expected growth from 1 June 2021. Considering the significant scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the Autoregressive Integrated Moving Average (ARIMA) and exponential smoothing models using the Dimensions database. This source has the particularity of including in the metadata information on the date in which papers were indexed. We present global predictions, plus predictions in three specific settings: by type of access (Open Access), by domain-specific repository (SSRN and MedRxiv) and by several research fields. We conclude by discussing our findings.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11192-022-04536-x.

摘要

未标注

我们对与新冠病毒相关的科学文献增长情况进行建模,并预测了2021年6月1日之后的预期增长。鉴于研究界为找到终结新冠疫情的解决方案付出了巨大的科学和财力努力,目前正在产出前所未有的大量科学成果。这对科学家、政治家和公民维持基础设施、消化内容并做出基于科学依据的决策的能力提出了质疑。一个关键方面是做出预测,为如此大量的科学文献做好准备。在此,我们使用Dimensions数据库,基于自回归积分移动平均(ARIMA)模型和指数平滑模型进行预测。该数据源的特别之处在于,其元数据中包含论文索引日期的信息。我们给出了全球预测结果,以及在三种特定情况下的预测结果:按获取类型(开放获取)、按特定领域知识库(SSRN和MedRxiv)以及按多个研究领域。最后我们对研究结果进行了讨论。

补充信息

在线版本包含可在10.1007/s11192-022-04536-x获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7861/9548429/a5e18b2bbb66/11192_2022_4536_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验