Suppr超能文献

一种受具身认知理论启发的认知数学模型。

An enactivist-inspired mathematical model of cognition.

作者信息

Weinstein Vadim, Sakcak Basak, LaValle Steven M

机构信息

Center for Ubiquitous Computing, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.

出版信息

Front Neurorobot. 2022 Sep 30;16:846982. doi: 10.3389/fnbot.2022.846982. eCollection 2022.

Abstract

In this paper we start from the philosophical position in cognitive science known as enactivism. We formulate five basic enactivist tenets that we have carefully identified in the relevant literature as the main underlying principles of that philosophy. We then develop a mathematical framework to talk about cognitive systems (both artificial and natural) which complies with these enactivist tenets. In particular we pay attention that our mathematical modeling does not attribute contentful symbolic representations to the agents, and that the agent's nervous system or brain, body and environment are modeled in a way that makes them an inseparable part of a greater totality. The long-term purpose for which this article sets the stage is to create a mathematical foundation for cognition which is in line with enactivism. We see two main benefits of doing so: (1) It enables enactivist ideas to be more accessible for computer scientists, AI researchers, roboticists, cognitive scientists, and psychologists, and (2) it gives the philosophers a mathematical tool which can be used to clarify their notions and help with their debates. Our main notion is that of a sensorimotor system which is a special case of a well studied notion of a transition system. We also consider related notions such as labeled transition systems and deterministic automata. We analyze a notion called and show that it is a very good candidate for a foundational notion in the "mathematics of cognition from an enactivist perspective." We demonstrate its importance by proving a uniqueness theorem about the minimal sufficient refinements (which correspond in some sense to an optimal attunement of an organism to its environment) and by showing that sufficiency corresponds to known notions such as sufficient history information spaces. In the end, we tie it all back to the enactivist tenets.

摘要

在本文中,我们从认知科学中被称为生成认知论的哲学立场出发。我们阐述了五条基本的生成认知论原则,这些原则是我们在相关文献中仔细甄别出的该哲学的主要潜在原则。然后,我们开发了一个数学框架来探讨认知系统(包括人工和自然的),该框架符合这些生成认知论原则。特别要注意的是,我们的数学建模不会将有意义的符号表征赋予智能体,并且智能体的神经系统或大脑、身体和环境是以一种使其成为一个更大整体中不可分割部分的方式进行建模的。本文为之搭建舞台的长期目标是创建一个与生成认知论相一致的认知数学基础。我们认为这样做有两个主要益处:(1)它能使生成认知论的观点对计算机科学家、人工智能研究者、机器人专家、认知科学家和心理学家来说更容易理解;(2)它为哲学家提供了一种数学工具,可用于阐明他们的概念并助力他们的辩论。我们的主要概念是感觉运动系统,它是一个经过充分研究的转换系统概念的特殊情况。我们还考虑了相关概念,如带标签的转换系统和确定性自动机。我们分析了一个名为 的概念,并表明它是“从生成认知论视角看认知数学”中基础概念的一个非常好的候选者。我们通过证明一个关于最小充分细化(在某种意义上对应于生物体对其环境的最优调适)的唯一性定理,并表明充分性与诸如充分历史信息空间等已知概念相对应,来证明其重要性。最后,我们将所有内容都与生成认知论原则联系起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验