Suppr超能文献

资源匮乏环境下的宏基因组病原体测序:经验教训与未来之路

Metagenomic Pathogen Sequencing in Resource-Scarce Settings: Lessons Learned and the Road Ahead.

作者信息

Yek Christina, Pacheco Andrea R, Vanaerschot Manu, Bohl Jennifer A, Fahsbender Elizabeth, Aranda-Díaz Andrés, Lay Sreyngim, Chea Sophana, Oum Meng Heng, Lon Chanthap, Tato Cristina M, Manning Jessica E

机构信息

Department of Critical Care Medicine, National Institutes H(of Health Clinical Center, Bethesda, Maryland, USA.

Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA.

出版信息

Front Epidemiol. 2022;2. doi: 10.3389/fepid.2022.926695. Epub 2022 Aug 15.

Abstract

Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.

摘要

宏基因组下一代测序(mNGS)是对生物样本中所有遗传物质进行测序的过程。该技术越来越受欢迎,有众多应用,包括疫情调查、生物监测以及临床样本中的病原体检测。然而,建立和维护mNGS项目成本高昂,低收入和中等收入国家(LMICs)面临的其他障碍可能会进一步扩大全球在mNGS能力方面的不平等。在过去二十年中,几次重要的传染病疫情凸显了建立广泛测序能力以支持疾病快速检测和源头控制的重要性。利用从新冠疫情中吸取的经验教训,低收入和中等收入国家可以借助当前的势头来设计和建立可持续的mNGS项目,这将成为对消除传染病至关重要的全球监测网络的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/10911019/db420e5ec4a9/fepid-02-926695-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验