Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan.
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2122641119. doi: 10.1073/pnas.2122641119. Epub 2022 Oct 17.
The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-Å resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) P-O bond cleavage; 3) four concomitant events: W1-PO formation, OH and proton cleavage, nucleophilic attack by the OH against P, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi-bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes.
肌动蛋白是主要的细胞骨架蛋白,它在单体 G 态和丝状 F 态之间循环转变,从而驱动细胞器运输和细胞运动。这种机械功是由 F 态催化部位的 ATPase 活性驱动的。为了更深入地了解肌动蛋白的细胞功能,必须阐明其反应机制。在这里,我们通过 fragmin 结构域 1 结合将单个肌动蛋白分子固定在 F 态,并展示了它们在 ATP 类似物、ADP-Pi 和 ADP 结合形式下的晶体结构,分辨率为 1.15Å。G 到 F 的构象转变使 Gln137 和 His161 的侧链发生位移,这四个水分子包括 W1(攻击水)和 W2(辅助水)重新定位,以促进水解。通过将量子力学/分子力学计算应用于这些结构,我们揭示了 F 态肌动蛋白水解的一致且全面的反应途径。该反应途径包括四个步骤:1)W1 和 W2 的旋转;2)P-O 键的断裂;3)四个同时发生的事件:W1-PO 的形成、OH 和质子的断裂、OH 对 P 的亲核攻击以及被提取的质子转移;4)质子的重新定位,稳定了 ADP-Pi 结合的 F 态肌动蛋白。该机制解释了肌动蛋白 ATP 水解的缓慢速率和水解反应的不可逆性。虽然肌动蛋白 ATP 水解的催化策略与肌球蛋白等马达蛋白基本相同,但水解后的过程是不同的,并从 Pi 释放、F 态失稳和全局构象变化的角度进行了讨论。