Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China.
Department of Nursing, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi 214044, China.
Oxid Med Cell Longev. 2022 Oct 8;2022:3119649. doi: 10.1155/2022/3119649. eCollection 2022.
Mitophagy, the selective removal of damaged mitochondria through autophagy, is crucial for mitochondrial turnover and quality control. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various diseases. This study aimed to investigate the neuroprotective role of DHA in ischaemic stroke models and and its involvement in mitophagy and mitochondrial dysfunction. A mouse model of ischaemic stroke was established through middle cerebral artery occlusion (MCAO). To simulate ischaemic stroke , PC12 cells were subjected to oxygen-glucose deprivation (OGD). Immunofluorescence analysis, western blotting (WB), electron microscopy (EM), functional behavioural tests, and Seahorse assay were used for analysis. DHA treatment significantly alleviated the brain infarction volume, neuronal apoptosis, and behavioural dysfunction in mice with ischaemic stroke. In addition, DHA enhanced mitophagy by significantly increasing the number of autophagosomes and LC3-positive mitochondria in neurons. The Seahorse assay revealed that DHA increased glutamate and succinate metabolism in neurons after ischaemic stroke. JC-1 and MitoSox staining, and evaluation of ATP levels indicated that DHA-induced mitophagy alleviated reactive oxygen species (ROS) accumulation and mitochondrial injury. Mechanistically, DHA improved mitochondrial dynamics by increasing the expression of dynamin-related protein 1 (Drp1), LC3, and the mitophagy clearance protein Pink1/Parkin. Mdivi-1, a specific mitophagy inhibitor, abrogated the neuroprotective effects of DHA, indicating that DHA protected neurons by enhancing mitophagy. Therefore, DHA can protect against neuronal apoptosis after stroke by clearing the damaged mitochondria through Pink1/Parkin-mediated mitophagy and by alleviating mitochondrial dysfunction.
自噬介导的受损线粒体选择性清除,即自噬体对线粒体的吞噬,对于线粒体的更新和质量控制至关重要。二十二碳六烯酸(DHA)是一种必需的ω-3 脂肪酸,它在各种疾病中保护线粒体。本研究旨在探讨 DHA 在缺血性中风模型中的神经保护作用及其与自噬和线粒体功能障碍的关系。通过大脑中动脉闭塞(MCAO)建立了缺血性中风的小鼠模型。为了模拟缺血性中风,将 PC12 细胞进行氧葡萄糖剥夺(OGD)处理。通过免疫荧光分析、Western blot(WB)、电子显微镜(EM)、功能行为测试和 Seahorse 分析进行分析。DHA 治疗显著减轻了缺血性中风小鼠的脑梗死体积、神经元凋亡和行为功能障碍。此外,DHA 通过显著增加神经元中自噬体和 LC3 阳性线粒体的数量来增强自噬体对线粒体的吞噬作用。Seahorse 分析表明,DHA 增加了缺血性中风后神经元中谷氨酸和琥珀酸的代谢。JC-1 和 MitoSox 染色以及 ATP 水平评估表明,DHA 诱导的自噬减轻了活性氧(ROS)的积累和线粒体损伤。机制上,DHA 通过增加动力相关蛋白 1(Drp1)、LC3 和自噬体清除蛋白 Pink1/Parkin 的表达来改善线粒体动力学。特异性自噬抑制剂 Mdivi-1 阻断了 DHA 的神经保护作用,表明 DHA 通过增强 Pink1/Parkin 介导的自噬清除受损线粒体来保护神经元。因此,DHA 可以通过 Pink1/Parkin 介导的自噬清除受损线粒体和减轻线粒体功能障碍来防止中风后神经元凋亡。