Suppr超能文献

旅客列车颗粒物去除和 COVID-19 感染概率的实验研究。

Experimental studies of particle removal and probability of COVID-19 infection in passenger railcars.

机构信息

Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.

出版信息

J Occup Environ Hyg. 2023 Jan;20(1):1-13. doi: 10.1080/15459624.2022.2137298. Epub 2022 Dec 5.

Abstract

A series of experiments in stationary and moving passenger railcars was conducted to measure the removal rates of particles in the size ranges of SARS-CoV-2 viral aerosols, and the air changes per hour provided by the existing and modified air handling systems. The effect of ventilation and air filtration systems on removal rates and their effects on estimated probability (i.e., risk) of infection was evaluated in a range of representative conditions: (1) for two different ratios of recirculated air (RA) to outdoor air (OA) (90:10 RA:OA and 67:33 RA:OA); (2) using minimum efficiency reporting value (MERV) filters with standard (MERV-8) and increased (MERV-13) filtration ratings; and (3) in the presence and absence of a portable high-efficiency particulate-air (HEPA) room air purifier system operated at clean air delivery rate (CADR) of 150 and 550 cfm. The higher-efficiency MERV-13 filters significantly increased particle removal rates on average by 3.8 to 8.4 hr across particle sizes ranging from 0.3 to 10 µm ( < 0.01) compared to MERV-8 filters. The different RA:OA ratios and the use of a portable HEPA air purifier system had little effect on particle removal rates. MERV-13 filters reduced the estimated probability of infection by 42% compared to the MERV-8 filter. The use of a HEPA-air purifier with a MERV-13 filter causes a 50% reduction in the estimated probability of infection. Upgrading the efficiency of HVAC filters from MERV-8 to MERV-13 in public transit vehicles is the most effective exposure control method resulting in a clear reduction in the removal rates of aerosol particles and the estimated probability of infection.

摘要

进行了一系列固定和移动旅客列车的实验,以测量 SARS-CoV-2 病毒气溶胶大小范围内颗粒的去除率,以及现有和改进的空气处理系统提供的空气每小时交换率。评估了通风和空气过滤系统对去除率的影响及其对感染估计概率(即风险)的影响,实验在一系列代表性条件下进行:(1)两种不同的再循环空气(RA)与室外空气(OA)比例(90:10 RA:OA 和 67:33 RA:OA);(2)使用具有标准(MERV-8)和增加(MERV-13)过滤等级的最小效率报告值(MERV)过滤器;(3)在存在和不存在便携式高效微粒空气(HEPA)室内空气净化器系统的情况下,该系统以 150 和 550 cfm 的清洁空气输送率(CADR)运行。与 MERV-8 过滤器相比,更高效率的 MERV-13 过滤器在 0.3 至 10 μm( < 0.01)的粒径范围内平均将颗粒去除率提高了 3.8 至 8.4 小时。不同的 RA:OA 比例和使用便携式 HEPA 空气净化器系统对颗粒去除率影响不大。与 MERV-8 过滤器相比,MERV-13 过滤器将感染的估计概率降低了 42%。与 MERV-8 过滤器相比,使用 MERV-13 过滤器的高效空气净化器会使感染的估计概率降低 50%。将公共交通车辆中的 HVAC 过滤器从 MERV-8 升级到 MERV-13 是最有效的暴露控制方法,可明显降低气溶胶颗粒的去除率和感染的估计概率。

相似文献

1
Experimental studies of particle removal and probability of COVID-19 infection in passenger railcars.
J Occup Environ Hyg. 2023 Jan;20(1):1-13. doi: 10.1080/15459624.2022.2137298. Epub 2022 Dec 5.
4
Air cleaning technologies: an evidence-based analysis.
Ont Health Technol Assess Ser. 2005;5(17):1-52. Epub 2005 Nov 1.
5
Portable HEPA Purifiers to Eliminate Airborne SARS-CoV-2: A Systematic Review.
Otolaryngol Head Neck Surg. 2022 Apr;166(4):615-622. doi: 10.1177/01945998211022636. Epub 2021 Jun 8.
7
Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.
Indoor Air. 2013 Dec;23(6):488-97. doi: 10.1111/ina.12045. Epub 2013 May 13.
9
Mitigation of Aerosols Generated During Exercise Testing With a Portable High-Efficiency Particulate Air Filter With Fume Hood.
Chest. 2021 Oct;160(4):1388-1396. doi: 10.1016/j.chest.2021.04.023. Epub 2021 Apr 22.

引用本文的文献

1
School-informed risk calculator tool for reducing the spread of respiratory viral infection among school-aged children.
Indoor Environ. 2025 Jun;2(2). doi: 10.1016/j.indenv.2025.100090. Epub 2025 Mar 27.
2
Bayesian hierarchical modeling and inference for mechanistic systems in industrial hygiene.
Ann Work Expo Health. 2024 Sep 27;68(8):834-845. doi: 10.1093/annweh/wxae061.

本文引用的文献

2
Risk analysis of different transport vehicles in India during COVID-19 pandemic.
Environ Res. 2021 Aug;199:111268. doi: 10.1016/j.envres.2021.111268. Epub 2021 May 11.
3
A guideline to limit indoor airborne transmission of COVID-19.
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2018995118.
4
Disease transmission through expiratory aerosols on an urban bus.
Phys Fluids (1994). 2021 Jan 1;33(1):015116. doi: 10.1063/5.0037452. Epub 2021 Jan 12.
5
UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication.
Sci Rep. 2021 Mar 18;11(1):6260. doi: 10.1038/s41598-021-85425-w.
6
Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event.
Indoor Air. 2021 Mar;31(2):314-323. doi: 10.1111/ina.12751. Epub 2020 Oct 13.
7
COVID-19 Outbreak and Hospital Air Quality: A Systematic Review of Evidence on Air Filtration and Recirculation.
Environ Sci Technol. 2021 Apr 6;55(7):4134-4147. doi: 10.1021/acs.est.0c03247. Epub 2020 Sep 11.
8
Aerosol transmission of SARS-CoV-2? Evidence, prevention and control.
Environ Int. 2020 Nov;144:106039. doi: 10.1016/j.envint.2020.106039. Epub 2020 Aug 7.
9
Risk of Coronavirus Disease 2019 Transmission in Train Passengers: an Epidemiological and Modeling Study.
Clin Infect Dis. 2021 Feb 16;72(4):604-610. doi: 10.1093/cid/ciaa1057.
10
Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments.
Indoor Air. 2020 Jul;30(4):557-558. doi: 10.1111/ina.12697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验