Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America.
J Neural Eng. 2020 Feb 27;17(1):016074. doi: 10.1088/1741-2552/ab6fc3.
New innovations in deep brain stimulation (DBS) enable directional current steering-allowing more precise electrical stimulation of the targeted brain structures for Parkinson's disease, essential tremor and other neurological disorders. While intra-operative navigation through MRI or CT approaches millimeter accuracy for placing the DBS leads, no existing modality provides feedback of the currents as they spread from the contacts through the brain tissue. In this study, we investigate transcranial acoustoelectric imaging (tAEI) as a new modality to non-invasively image and characterize current produced from a directional DBS lead. tAEI uses ultrasound (US) to modulate tissue resistivity to generate detectable voltage signals proportional to the local currents.
An 8-channel directional DBS lead (Infinity 6172ANS, Abbott Inc) was inserted inside three adult human skulls submerged in 0.9% NaCl. A 2.5 MHz linear array delivered US pulses through the transtemporal window and focused near the contacts on the lead, while a custom amplifier and acquisition system recorded the acoustoelectric (AE) interaction used to generate images.
tAEI detected monopolar current with stimulation pulses as short as 100 µs with an SNR ranging from 10-27 dB when using safe US pressure (mechanical indices <0.78) and injected current of ~2 mA peak amplitude. Adjacent contacts were discernable along the length and within each ring of the lead with a mean radial separation between contacts of 2.10 and 1.34 mm, respectively.
These results demonstrate the feasibility of tAEI for high resolution mapping of directional DBS currents using clinically-relevant stimulation parameters. This new modality may improve the accuracy for placing the DBS leads, guide calibration and programming, and monitor long-term performance of DBS for treatment of Parkinson's disease.
深部脑刺激(DBS)的新创新使电流能够定向转向——为帕金森病、原发性震颤和其他神经疾病的目标大脑结构提供更精确的电刺激。虽然术中通过 MRI 或 CT 方法将 DBS 导联放置的精度达到毫米级,但没有现有的方式可以提供电流从触点传播到脑组织时的反馈。在这项研究中,我们研究了经颅声电成像(tAEI)作为一种新的非侵入性成像和描绘定向 DBS 导联产生的电流的方式。tAEI 使用超声波(US)调制组织电阻抗以产生与局部电流成正比的可检测电压信号。
将 8 通道定向 DBS 导联(Infinity 6172ANS,Abbott Inc)插入三个浸泡在 0.9% NaCl 中的成人颅骨内。一个 2.5 MHz 线性阵列通过经颞窗输送 US 脉冲,并在导联的触点附近聚焦,而一个定制的放大器和采集系统记录用于生成图像的声电(AE)相互作用。
当使用安全的 US 压力(机械指数 <0.78)和注入约 2 mA 峰值幅度的电流时,tAEI 可以检测到最短为 100 µs 的单极电流,信噪比范围为 10-27 dB。可以沿着导联的长度和每个环分辨出相邻的触点,触点之间的平均径向分离分别为 2.10 和 1.34 mm。
这些结果表明,tAEI 具有使用临床相关刺激参数对定向 DBS 电流进行高分辨率映射的可行性。这种新方式可能会提高 DBS 导联放置的准确性,指导校准和编程,并监测 DBS 治疗帕金森病的长期效果。