Suppr超能文献

患者在在线健康社区中选择医生的行为:基于精细加工可能性模型。

Patient's behavior of selection physician in online health communities: Based on an Elaboration likelihood model.

机构信息

Research Center of Management Science and Engineering, Jiangxi Normal University, Nanchang, China.

School of Software, Jiangxi Normal University, Nanchang, China.

出版信息

Front Public Health. 2022 Oct 3;10:986933. doi: 10.3389/fpubh.2022.986933. eCollection 2022.

Abstract

BACKGROUND

With the rapid development of "Internet + medicine" and the impact of the COVID-19 epidemic, online health communities have become an important way for patients to seek medical treatment. However, the mistrust between physicians and patients in online health communities has long existed and continues to impact the decision-making behavior of patients. The purpose of this article is to explore the influencing factors of patient decision-making in online health communities by identifying the relationship between physicians' online information and patients' selection behavior.

METHODS

In this study, we selected China's Good Doctor (www.haodf.com) as the source of data, scrapped 10,446 physician data from December 2020 to June 2021 to construct a logit model of online patients' selection behavior, and used regression analysis to test the hypotheses.

RESULTS

The number of types of services, number of scientific articles, and avatar in physicians' personal information all has a positive effect on patients' selection behavior, while the title and personal introduction hurt patients' selection behavior. Online word-of-mouth positively affected patients' selection behavior and disease risk had a moderating effect.

CONCLUSION

Focusing on physician-presented information, this article organically combines the Elaboration likelihood model with trust source theory and online word-of-mouth from the perspective of the trusted party-physician, providing new ideas for the study of factors influencing patients' selection behavior in online health communities. The findings provide useful insights for patients, physicians, and community managers about the relationship between physician information and patients' selection behavior.

摘要

背景

随着“互联网+医疗”的快速发展和新冠疫情的影响,在线健康社区已成为患者就医的重要途径。然而,在线健康社区中医生和患者之间的信任缺失长期存在,并持续影响着患者的决策行为。本文旨在通过识别医生在线信息与患者选择行为之间的关系,探讨在线健康社区中患者决策的影响因素。

方法

本研究以中国好大夫(www.haodf.com)为数据来源,从 2020 年 12 月至 2021 年 6 月共抓取 10446 名医生数据,构建在线患者选择行为的逻辑回归模型,并采用回归分析检验假设。

结果

医生个人信息中的服务类型数量、科研文章数量和头像对患者的选择行为有正向影响,而职称和个人介绍则会损害患者的选择行为。在线口碑对患者的选择行为有正向影响,疾病风险起到调节作用。

结论

本文从可信方-医生的角度出发,有机地将详尽可能性模型与信任源理论和在线口碑相结合,为研究在线健康社区中影响患者选择行为的因素提供了新的思路。研究结果为患者、医生和社区管理者了解医生信息与患者选择行为之间的关系提供了有益的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/9574016/5ba26b6e31c4/fpubh-10-986933-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验