Biochemistry. 2022 Nov 1;61(21):2295-2302. doi: 10.1021/acs.biochem.2c00482. Epub 2022 Oct 20.
Autophagy is a catabolic cellular process in which unwanted proteins and organelles are degraded by lysosomes. It is characterized by the formation of the double-membrane autophagosome decorated with LC3B, a protein that mediates autophagosomal fusion with lysosomes. The cysteine protease ATG4b acts at two stages in the life cycle of LC3B. We set out to characterize the protein-protein interaction between LC3B and ATG4b. Through biochemical and biophysical studies, we show that the ubiquitin-like core of LC3B (residues 1-115; "LC3B-115"), which lacks the C-terminal cleavage site (between residue 120 and 121), binds to full-length ATG4b with a surprisingly tight dissociation constant () in the low nanomolar range; 10-30-fold tighter than that of the substrate pro-LC3B (residues 1-125) or the product LC3B-I (residues 1-120). Consequently, LC3B-115 is a potent inhibitor of the ATG4b-mediated cleavage of pro-LC3B (IC = 15 nM). Binding of the LC3B-115 has no effect on the conformation of the active site of ATG4b, as judged by the turnover of a peptide substrate ("substrate-33"), derived from LC3B-I residues 116-120. Conversely, truncations of ATG4b show that binding and proteolysis of LC3B critically depend on the C-terminal tail of ATG4b, whereas proteolysis of the peptide substrate-33 does not require the C-terminal tail of ATG4b. These results support a bipartite model for LC3B-ATG4b binding in which the core of LC3B binds to ATG4b and the C-terminal tail of pro-LC3B organizes the ATG4b active site; additionally, the C-terminal tail of ATG4b contributes at least 1000-fold higher binding affinity to the LC3B-ATG4b interaction and likely wraps around the LC3B-ubiquitin core. PPIs are often described as containing an energetic "hot spot" for binding; in the case of LC3B-ATG4b, however, the substrate-enzyme complex contains multiple, energetically relevant domains that differentially affect binding affinity and catalytic efficiency.
自噬是一种溶酶体介导的细胞内降解途径,在此过程中,不需要的蛋白质和细胞器被溶酶体降解。自噬的特征是形成双层膜自噬体,该自噬体被 LC3B 蛋白所修饰,LC3B 蛋白介导自噬体与溶酶体融合。半胱氨酸蛋白酶 ATG4b 在 LC3B 的生命周期中发挥两个阶段的作用。我们着手研究 LC3B 和 ATG4b 之间的蛋白质-蛋白质相互作用。通过生化和生物物理研究,我们表明 LC3B 的泛素样核心(残基 1-115;“LC3B-115”),缺乏 C 末端切割位点(位于残基 120 和 121 之间),与全长 ATG4b 以出乎意料的低纳摩尔范围的解离常数()结合;比底物 pro-LC3B(残基 1-125)或产物 LC3B-I(残基 1-120)结合更紧密 10-30 倍。因此,LC3B-115 是 ATG4b 介导的 pro-LC3B 切割的有效抑制剂(IC = 15 nM)。结合 LC3B-115 对 ATG4b 的活性位点构象没有影响,这可以从衍生自 LC3B-I 残基 116-120 的肽底物“底物-33”的周转率来判断。相反,ATG4b 的截断显示 LC3B 的结合和蛋白水解严重依赖于 ATG4b 的 C 末端尾巴,而肽底物-33 的蛋白水解不需要 ATG4b 的 C 末端尾巴。这些结果支持 LC3B-ATG4b 结合的二部分模型,其中 LC3B 的核心与 ATG4b 结合,而 pro-LC3B 的 C 末端尾巴组织 ATG4b 的活性位点;此外,ATG4b 的 C 末端尾巴至少对 LC3B-ATG4b 相互作用贡献了 1000 倍的更高结合亲和力,并可能包裹在 LC3B-泛素核心周围。蛋白质-蛋白质相互作用通常被描述为包含一个能量“热点”用于结合;然而,在 LC3B-ATG4b 的情况下,底物-酶复合物包含多个具有不同能量的相关结构域,这些结构域会影响结合亲和力和催化效率。