Ammer Tatjana, Schützenmeister André, Prokosch Hans-Ulrich, Zierk Jakob, Rank Christopher M, Rauh Manfred
Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Medical Informatics, Erlangen, Germany.
Roche Diagnostics GmbH, Biostatistics & Data Science, Penzberg, Germany.
Clin Chem. 2022 Nov 3;68(11):1410-1424. doi: 10.1093/clinchem/hvac142.
Indirect methods leverage real-world data for the estimation of reference intervals. These constitute an active field of research, and several methods have been developed recently. So far, no standardized tool for evaluation and comparison of indirect methods exists.
We provide RIbench, a benchmarking suite for quantitative evaluation of any existing or novel indirect method. The benchmark contains simulated test sets for 10 biomarkers mimicking routine measurements of a mixed distribution of non-pathological (reference) values and pathological values. The non-pathological distributions represent 4 common distribution types: normal, skewed, heavily skewed, and skewed-and-shifted. To identify strengths and weaknesses of indirect methods, test sets have varying sample sizes and pathological distributions differ in location, extent of overlap, and fraction. For performance evaluation, we use an overall benchmark score and sub-scores derived from absolute z-score deviations between estimated and true reference limits. We illustrate the application of RIbench by evaluating and comparing the Hoffmann method and 4 modern indirect methods -TML (Truncated-Maximum-Likelihood), kosmic, TMC (Truncated-Minimum-Chi-Square), and refineR- against one another and against a nonparametric direct method (n = 120).
For the modern indirect methods, pathological fraction and sample size had a strong influence on the results: With a pathological fraction up to 20% and a minimum sample size of 5000, most methods achieved results comparable or superior to the direct method.
We present RIbench, an open-source R-package, for the systematic evaluation of existing and novel indirect methods. RIbench can serve as a tool for enhancement of indirect methods, improving the estimation of reference intervals.
间接方法利用真实世界数据来估计参考区间。这是一个活跃的研究领域,最近已开发出多种方法。到目前为止,尚无用于评估和比较间接方法的标准化工具。
我们提供了RIbench,这是一个用于对任何现有或新型间接方法进行定量评估的基准测试套件。该基准包含针对10种生物标志物的模拟测试集,模拟了非病理(参考)值和病理值混合分布的常规测量。非病理分布代表4种常见分布类型:正态分布、偏态分布、高度偏态分布以及偏态且有偏移的分布。为了识别间接方法的优缺点,测试集具有不同的样本量,并且病理分布在位置、重叠程度和比例方面存在差异。为了进行性能评估,我们使用一个总体基准分数以及从估计参考限与真实参考限之间的绝对z分数偏差得出的子分数。我们通过评估和比较霍夫曼方法以及4种现代间接方法——TML(截断最大似然法)、kosmic、TMC(截断最小卡方法)和refineR——相互之间以及与一种非参数直接方法(n = 120)来说明RIbench的应用。
对于现代间接方法,病理比例和样本量对结果有很大影响:当病理比例高达20%且最小样本量为5000时,大多数方法取得的结果与直接方法相当或更优。
我们展示了RIbench,一个开源的R包,用于对现有和新型间接方法进行系统评估。RIbench可作为增强间接方法、改进参考区间估计的工具。