Suppr超能文献

一种使用真实世界数据进行连续参考区间全自动估计的流程。

A pipeline for the fully automated estimation of continuous reference intervals using real-world data.

作者信息

Ammer Tatjana, Schützenmeister André, Prokosch Hans-Ulrich, Rauh Manfred, Rank Christopher M, Zierk Jakob

机构信息

Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Roche Diagnostics GmbH, Penzberg, Germany.

出版信息

Sci Rep. 2023 Aug 18;13(1):13440. doi: 10.1038/s41598-023-40561-3.

Abstract

Reference intervals are essential for interpreting laboratory test results. Continuous reference intervals precisely capture physiological age-specific dynamics that occur throughout life, and thus have the potential to improve clinical decision-making. However, established approaches for estimating continuous reference intervals require samples from healthy individuals, and are therefore substantially restricted. Indirect methods operating on routine measurements enable the estimation of one-dimensional reference intervals, however, no automated approach exists that integrates the dependency on a continuous covariate like age. We propose an integrated pipeline for the fully automated estimation of continuous reference intervals expressed as a generalized additive model for location, scale and shape based on discrete model estimates using an indirect method (refineR). The results are free of subjective user-input, enable conversion of test results into z-scores and can be integrated into laboratory information systems. Comparison of our results to established and validated reference intervals from the CALIPER and PEDREF studies and manufacturers' package inserts shows good agreement of reference limits, indicating that the proposed pipeline generates high-quality results. In conclusion, the developed pipeline enables the generation of high-precision percentile charts and continuous reference intervals. It represents the first parameter-less and fully automated solution for the indirect estimation of continuous reference intervals.

摘要

参考区间对于解释实验室检测结果至关重要。连续参考区间精确地捕捉了一生中发生的特定生理年龄动态变化,因此有可能改善临床决策。然而,既定的估计连续参考区间的方法需要来自健康个体的样本,因此受到很大限制。基于常规测量的间接方法能够估计一维参考区间,但是,不存在一种能整合对年龄等连续协变量依赖性的自动化方法。我们提出了一种集成流程,用于基于使用间接方法(refineR)的离散模型估计,以完全自动化的方式估计表示为位置、尺度和形状的广义相加模型的连续参考区间。结果无需用户主观输入,能够将检测结果转换为z分数,并且可以集成到实验室信息系统中。将我们的结果与CALIPER和PEDREF研究以及制造商包装说明书中既定且经过验证的参考区间进行比较,结果显示参考限值吻合良好,表明所提出的流程能产生高质量结果。总之,所开发的流程能够生成高精度百分位数图表和连续参考区间。它代表了用于间接估计连续参考区间的首个无参数且完全自动化的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5469/10439150/59b4bbb2b187/41598_2023_40561_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验