Suppr超能文献

使用卷积神经网络进行间接参考区间估计及其在癌抗原 125 中的应用。

Indirect reference interval estimation using a convolutional neural network with application to cancer antigen 125.

机构信息

Abartys Health, San Juan, PR, 00907-3913, USA.

Department of Physics, University of Puerto Rico, San Juan, PR, 00925-2537, USA.

出版信息

Sci Rep. 2024 Aug 20;14(1):19332. doi: 10.1038/s41598-024-70074-6.

Abstract

Indirect methods for reference interval (RI) estimation, which use data acquired from routine pathology testing, have the potential to accelerate the establishment of RIs to account for variables such as gender and age to improve clinical assessments. However, they require more sophisticated methods of analysis due to the potential influence of pathological patients in raw clinical datasets. In this paper we develop a novel convolutional neural network (CNN) model trained on synthetic data to identify underlying healthy distributions within pathological admixtures. We present both the methodology to generate synthetic data and the CNN model. We evaluate the CNN using two synthetic test datasets, including samples from a proposed benchmark for indirect methods (RIBench) and show significant improvements compared to the reported state-of-the-art method based on the benchmark (refineR). We also demonstrate a real-world application of the model, estimating age-specific RIs for cancer antigen 125 (CA-125), a crucial biomarker for ovarian cancer diagnostics. Our results show that CA-125 RIs are strongly age-dependent, which could have important diagnostic consequences.

摘要

间接参考区间 (RI) 估计方法利用常规病理检测获得的数据,具有加速建立考虑性别和年龄等变量的 RI 的潜力,以改善临床评估。然而,由于原始临床数据集中可能存在病理性患者,因此需要更复杂的分析方法。在本文中,我们开发了一种基于合成数据训练的新型卷积神经网络 (CNN) 模型,用于识别病理混合物中的潜在健康分布。我们提出了生成合成数据的方法和 CNN 模型。我们使用两个合成测试数据集评估 CNN,包括来自提议的间接方法基准 (RIBench) 的样本,并与基于基准的报告的最先进方法 (refineR) 相比显示出显著的改进。我们还展示了该模型的实际应用,估计癌症抗原 125 (CA-125) 的特定年龄的 RI,CA-125 是卵巢癌诊断的关键生物标志物。我们的结果表明,CA-125 的 RI 与年龄密切相关,这可能具有重要的诊断意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee29/11336095/41f3d6403c70/41598_2024_70074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验