Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 Nov 2;144(43):19849-19860. doi: 10.1021/jacs.2c07498. Epub 2022 Oct 20.
Diamine-appended Mg(dobpdc) (dobpdc = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO adsorbents, although their stability to SO─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO on the stability and CO capture performance of dmpn-Mg(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO breakthrough experiments and CO isobar measurements, we find that the material retains 91% of its CO capacity after saturation with a wet simulated flue gas containing representative levels of CO and SO, highlighting the robustness of this framework to SO under realistic CO capture conditions. Initial SO cycling experiments suggest dmpn-Mg(dobpdc) may achieve a stable operating capacity in the presence of SO after initial passivation. Evaluation of several other diamine-Mg(dobpdc) variants reveals that those with , (1°,1°) diamines, including dmpn-Mg(dobpdc), are more robust to humid SO than those featuring , (1°,2°) or , (1°,3°) diamines. Based on the solid-state N NMR spectra and density functional theory calculations, we find that under humid conditions, SO reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO capture applications.
二胺修饰的 Mg(dobpdc)(dobpdc = 4,4'-二氧代联苯-3,3'-二羧酸酯)金属有机骨架是一类很有前途的 CO 吸附剂,尽管它们对 SO(工业相关废气流中的痕量成分)的稳定性在很大程度上仍未得到检验。在这里,我们研究了 SO 对 dmpn-Mg(dobpdc)(dmpn = 2,2-二甲基-1,3-丙二胺)稳定性和 CO 捕获性能的影响,dmpn-Mg(dobpdc) 是一种从燃煤电厂烟道气中捕获 CO 的候选材料。通过 SO 穿透实验和 CO 等压测量,我们发现该材料在饱和含有代表性浓度的 CO 和 SO 的湿模拟烟道气后保留了 91%的 CO 容量,这突出了该框架在实际 CO 捕获条件下对 SO 的稳健性。初步的 SO 循环实验表明,在初始钝化后,dmpn-Mg(dobpdc) 可能在存在 SO 的情况下实现稳定的操作容量。对几种其他二胺-Mg(dobpdc) 变体的评估表明,与那些具有 ,(1°,1°) 二胺的变体相比,包括 dmpn-Mg(dobpdc),在潮湿的 SO 存在下更稳健,而那些具有 ,(1°,2°) 或 ,(1°,3°) 二胺的变体则更容易受到影响。基于固态 N NMR 谱和密度泛函理论计算,我们发现,在潮湿条件下,SO 与金属结合的伯胺反应,形成带正电荷的亚硫酸根物种,从而促进材料降解。在 1°,2°和 1°,3°二胺修饰的 Mg(dobpdc) 中,伯胺与金属结合;而在 1°,1°二胺中,SO 与游离端反应形成亚硫酸氢铵,同时保持金属-二胺键的完整性。这种结构-性能关系可用于指导进一步优化这些材料,以用于 CO 捕获应用。