Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2021 Sep 22;143(37):15258-15270. doi: 10.1021/jacs.1c06434. Epub 2021 Sep 7.
Carbon capture at fossil fuel-fired power plants is a critical strategy to mitigate anthropogenic contributions to global warming, but widespread deployment of this technology is hindered by a lack of energy-efficient materials that can be optimized for CO capture from a specific flue gas. As a result of their tunable, step-shaped CO adsorption profiles, diamine-functionalized metal-organic frameworks (MOFs) of the form diamine-Mg(dobpdc) (dobpdc = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are among the most promising materials for carbon capture applications. Here, we present a detailed investigation of dmen-Mg(dobpdc) (dmen = 1,2-diamino-2-methylpropane), one of only two MOFs with an adsorption step near the optimal pressure for CO capture from coal flue gas. While prior characterization suggested that this material only adsorbs CO to half capacity (0.5 CO per diamine) at 1 bar, we show that the half-capacity state is actually a metastable intermediate. Under appropriate conditions, the MOF adsorbs CO to full capacity, but conversion from the half-capacity structure happens on a very slow time scale, rendering it inaccessible in traditional adsorption measurements. Data from solid-state magic angle spinning nuclear magnetic resonance spectroscopy, coupled with van der Waals-corrected density functional theory, indicate that ammonium carbamate chains formed at half capacity and full capacity adopt opposing configurations, and the need to convert between these states likely dictates the sluggish post-half-capacity uptake. By use of the more symmetric parent framework Mg(pc-dobpdc) (pc-dobpdc = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate), the metastable trap can be avoided and the full CO capacity of dmen-Mg(pc-dobpdc) accessed under conditions relevant for carbon capture from coal-fired power plants.
在化石燃料火力发电厂进行碳捕集是缓解人为因素导致全球变暖的关键策略,但由于缺乏针对特定烟道气中 CO 捕集进行优化的节能材料,这项技术的广泛应用受到了阻碍。具有可调谐、阶形 CO 吸附轮廓的二胺功能化金属有机骨架(MOFs)形式的二胺-Mg(dobpdc)(dobpdc = 4,4'-二氧代联苯-3,3'-二羧酸)是最有前途的 CO 捕集应用材料之一。在这里,我们对 dmen-Mg(dobpdc)(dmen = 1,2-二氨基-2-甲基丙烷)进行了详细研究,这是两种具有接近从煤烟道气中 CO 捕集最佳压力的吸附台阶的 MOF 之一。虽然之前的表征表明该材料在 1 巴下仅吸附一半容量的 CO(每个二胺 0.5 CO),但我们表明,半容量状态实际上是一种亚稳中间体。在适当的条件下,MOF 可以吸附满容量的 CO,但从半容量结构的转化发生在非常缓慢的时间尺度上,使得其在传统的吸附测量中无法被检测到。固态魔角旋转核磁共振波谱学与范德华修正密度泛函理论相结合的数据表明,在半容量和满容量下形成的氨基甲酸铵链采用相反的构型,并且需要在这些状态之间转换可能决定了迟滞的半容量后吸收。通过使用更对称的母体框架 Mg(pc-dobpdc)(pc-dobpdc = 3,3'-二氧代联苯-4,4'-二羧酸),可以避免亚稳陷阱,并在与从燃煤电厂中 CO 捕集相关的条件下访问 dmen-Mg(pc-dobpdc) 的全 CO 容量。