Zhu Ziting, Tsai Hsinhan, Parker Surya T, Lee Jung-Hoon, Yabuuchi Yuto, Jiang Henry Z H, Wang Yang, Xiong Shuoyan, Forse Alexander C, Dinakar Bhavish, Huang Adrian, Dun Chaochao, Milner Phillip J, Smith Alex, Guimarães Martins Pedro, Meihaus Katie R, Urban Jeffrey J, Reimer Jeffrey A, Neaton Jeffrey B, Long Jeffrey R
Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States.
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
J Am Chem Soc. 2024 Mar 6;146(9):6072-6083. doi: 10.1021/jacs.3c13381. Epub 2024 Feb 24.
Diamine-appended Mg(dobpdc) (dobpdc = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO. To date, CO uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO per diamine. Herein, we report a new framework, pip2-Mg(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO uptake and achieves an unusually high CO capacity approaching 1.5 CO per diamine at saturation. Analysis of variable-pressure CO uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg(dobpdc) captures CO via an unprecedented mechanism involving the initial insertion of CO to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg(dobpdc) exhibits exceptional performance for CO capture under conditions relevant to the separation of CO from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg(dobpdc) materials with even higher capacities than those predicted based on CO chemisorption alone.
含二胺的Mg(dobpdc)(dobpdc = 4,4'-二氧代联苯-3,3'-二羧酸酯)金属有机框架是有前景的碳捕获材料,对一氧化碳表现出卓越的选择性和高容量。迄今为止,已表明这些材料中一氧化碳的吸收主要通过一种化学吸附机制发生,该机制涉及一氧化碳在含胺金属位点的插入,这种机制将材料的容量限制为每二胺约1当量的一氧化碳。在此,我们报告了一种新的框架pip2-Mg(dobpdc)(pip2 = 1-(2-氨基乙基)哌啶),它表现出两步一氧化碳吸收,并且在饱和时实现了异常高的一氧化碳容量,接近每二胺1.5个一氧化碳。使用固态核磁共振(NMR)光谱和漫反射红外傅里叶变换光谱(DRIFTS)对该材料中的变压一氧化碳吸收进行分析,结果表明pip2-Mg(dobpdc)通过一种前所未有的机制捕获一氧化碳,该机制涉及一氧化碳首先插入到材料中一半位点形成氨基甲酸铵链,随后是串联协同化学吸附和物理吸附。粉末X射线衍射分析在范德华校正密度泛函理论的支持下表明,物理吸附的一氧化碳占据由相邻氨基甲酸铵链和连接体形成的口袋。基于突破和延长循环实验,pip2-Mg(dobpdc)在与从垃圾填埋气中分离一氧化碳相关的条件下表现出卓越的一氧化碳捕获性能。更广泛地说,这些结果突出了设计具有比仅基于一氧化碳化学吸附预测的容量更高的二胺-Mg(dobpdc)材料的新机会。