Suppr超能文献

运用机器学习算法评估中国上海基层医疗居民的高血压风险。

Evaluating the risk of hypertension in residents in primary care in Shanghai, China with machine learning algorithms.

机构信息

School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Public Health. 2022 Oct 4;10:984621. doi: 10.3389/fpubh.2022.984621. eCollection 2022.

Abstract

OBJECTIVE

The prevention of hypertension in primary care requires an effective and suitable hypertension risk assessment model. The aim of this study was to develop and compare the performances of three machine learning algorithms in predicting the risk of hypertension for residents in primary care in Shanghai, China.

METHODS

A dataset of 40,261 subjects over the age of 35 years was extracted from Electronic Healthcare Records of 47 community health centers from 2017 to 2019 in the Pudong district of Shanghai. Embedded methods were applied for feature selection. Machine learning algorithms, XGBoost, random forest, and logistic regression analyses were adopted in the process of model construction. The performance of models was evaluated by calculating the area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, accuracy and F1-score.

RESULTS

The XGBoost model outperformed the other two models and achieved an AUC of 0.765 in the testing set. Twenty features were selected to construct the model, including age, diabetes status, urinary protein level, BMI, elderly health self-assessment, creatinine level, systolic blood pressure measured on the upper right arm, waist circumference, smoking status, low-density lipoprotein cholesterol level, high-density lipoprotein cholesterol level, frequency of drinking, glucose level, urea nitrogen level, total cholesterol level, diastolic blood pressure measured on the upper right arm, exercise frequency, time spent engaged in exercise, high salt consumption, and triglyceride level.

CONCLUSIONS

XGBoost outperformed random forest and logistic regression in predicting the risk of hypertension in primary care. The integration of this risk assessment model into primary care facilities may improve the prevention and management of hypertension in residents.

摘要

目的

在初级保健中预防高血压需要有效的、合适的高血压风险评估模型。本研究旨在开发和比较三种机器学习算法在预测中国上海初级保健居民高血压风险方面的性能。

方法

从 2017 年至 2019 年上海浦东新区 47 家社区卫生服务中心的电子医疗记录中提取了一个 40261 名年龄超过 35 岁的受试者数据集。应用嵌入式方法进行特征选择。在模型构建过程中采用了机器学习算法、XGBoost、随机森林和逻辑回归分析。通过计算受试者工作特征曲线下面积、灵敏度、特异性、阳性预测值、阴性预测值、准确性和 F1 评分来评估模型的性能。

结果

XGBoost 模型优于其他两种模型,在测试集中的 AUC 为 0.765。该模型构建选择了 20 个特征,包括年龄、糖尿病状态、尿蛋白水平、BMI、老年人健康自评、肌酐水平、右上臂收缩压、腰围、吸烟状态、低密度脂蛋白胆固醇水平、高密度脂蛋白胆固醇水平、饮酒频率、血糖水平、尿素氮水平、总胆固醇水平、右上臂舒张压、运动频率、运动时间、高盐摄入和甘油三酯水平。

结论

XGBoost 在预测初级保健高血压风险方面优于随机森林和逻辑回归。将这种风险评估模型整合到初级保健设施中可能会改善居民高血压的预防和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d94b/9577109/2f41997e174d/fpubh-10-984621-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验