Suppr超能文献

机器学习算法在美国国家健康与营养调查 1999-2018 中识别出高血压人群中的低钾血症风险。

Machine learning algorithms identify hypokalaemia risk in people with hypertension in the United States National Health and Nutrition Examination Survey 1999-2018.

机构信息

Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, China.

出版信息

Ann Med. 2023 Dec;55(1):2209336. doi: 10.1080/07853890.2023.2209336.

Abstract

BACKGROUND

Hypokalaemia is a side-effect of diuretics. We aimed to use machine learning to identify features predicting hypokalaemia risk in hypertensive patients.

METHODS

Participants with hypertension in the United States National Health and Nutrition Examination Survey 1999-2018 were included for analysis. To select the most suitable algorithm, we tested and evaluated five machine learning algorithms commonly employed in epidemiological studies: Logistic Regression, k-Nearest Neighbor, Random Forest, Recursive Partitioning and Regression Trees, and eXtreme Gradient Boosting. These algorithms were accessed using a set of 38 screened features. We then selected the key hypokalaemia-associated features in the hypertension group and their cardiovascular diseases (CVD) subgroup using the SHapley Additive exPlanations (SHAP) values. Using SHAP values, the key features and their impact pattern on hypokalaemia risk were determined.

RESULTS

A total of 25,326 hypertensive participants were included for analysis, of whom 4,511 had known CVD. The Random Forest algorithm had the highest AUROC (hypertension dataset: 0.73 [95%CI, 0.71-0.76]; CVD subgroup: 0.72 [95%CI, 0.66-0.78]). Moreover, the nomogram based on the top twelve key features screened by random forest retained good performance: age, sex, race, poverty income ratio, body mass index, systolic and diastolic blood pressure, non-potassium-sparing diuretics use and duration, renin-angiotensin blockers use and duration, and CVD history in hypertension dataset; while in CVD subgroup, the additional key features were comorbid diabetes, education level, smoking status, and use of bronchodilators.

CONCLUSION

Our predictive model based on the random forest algorithm performed best among the tested and evaluated five algorithms. Hypokalaemia-associated key features have been identified in hypertensive patients and the subgroup with CVD. These findings from machine learning facilitate the development of artificial intelligence to highlight hypokalaemia risk in hypertension patients.

摘要

背景

低钾血症是利尿剂的副作用。我们旨在使用机器学习来识别预测高血压患者低钾血症风险的特征。

方法

纳入了美国 1999-2018 年国家健康和营养调查中的高血压患者进行分析。为了选择最合适的算法,我们测试和评估了常用于流行病学研究的五种机器学习算法:逻辑回归、k 最近邻、随机森林、递归分区和回归树以及极端梯度提升。这些算法使用一组 38 个筛选特征进行访问。然后,我们使用 SHapley Additive exPlanations(SHAP)值在高血压组及其心血管疾病(CVD)亚组中选择与低钾血症相关的关键特征。使用 SHAP 值,确定低钾血症风险的关键特征及其影响模式。

结果

共纳入 25326 名高血压参与者进行分析,其中 4511 名患有已知 CVD。随机森林算法的 AUROC 最高(高血压数据集:0.73 [95%CI,0.71-0.76];CVD 亚组:0.72 [95%CI,0.66-0.78])。此外,基于随机森林筛选的前 12 个关键特征构建的列线图保留了良好的性能:年龄、性别、种族、贫困收入比、体重指数、收缩压和舒张压、非保钾利尿剂的使用和持续时间、肾素-血管紧张素阻滞剂的使用和持续时间,以及高血压数据集中的 CVD 病史;而在 CVD 亚组中,其他关键特征包括合并糖尿病、教育程度、吸烟状况和使用支气管扩张剂。

结论

在测试和评估的五种算法中,我们基于随机森林算法的预测模型表现最佳。在高血压患者和 CVD 亚组中确定了与低钾血症相关的关键特征。这些来自机器学习的发现有助于开发人工智能,以突出高血压患者的低钾血症风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b36/10198242/e43b5e71a33c/IANN_A_2209336_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验