Huff Jonathan S, Díaz Sebastián A, Barclay Matthew S, Chowdhury Azhad U, Chiriboga Matthew, Ellis Gregory A, Mathur Divita, Patten Lance K, Roy Simon K, Sup Aaron, Biaggne Austin, Rolczynski Brian S, Cunningham Paul D, Li Lan, Lee Jeunghoon, Davis Paul H, Yurke Bernard, Knowlton William B, Medintz Igor L, Turner Daniel B, Melinger Joseph S, Pensack Ryan D
Micron School of Materials Science & Engineering, Department of Physics, Department of Chemistry & Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States.
Center for Bio/Molecular Science and Engineering Code 6900, Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.
J Phys Chem C Nanomater Interfaces. 2022 Oct 13;126(40):17164-17175. doi: 10.1021/acs.jpcc.2c04336. Epub 2022 Sep 28.
Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.
分子激子在光捕获、有机光电子学和纳米级计算等应用中很有用。电子能量转移(EET)是基于分子激子的器件功能的核心过程。实现具有高量子效率的EET是激子器件的一个常见障碍,这通常是由于缺乏具有良好光谱重叠的供体和受体分子。通过使用异质聚集体(化学性质不同的染料聚集体)而不是单个染料作为能量中继单元,可以大幅提高EET量子效率。然而,控制异质聚集体的组装仍然是一个重大挑战。在这里,我们使用DNA霍利迪连接体来组装典型的花菁染料Cy5和Cy5.5的同四聚体和异四聚体聚集体。除了能够控制聚集体内染料的数量外,DNA模板组装还能控制聚集体的组成,即组成Cy5和Cy5.5染料的比例。通过改变Cy5和Cy5.5的比例,我们表明所得四聚体的最强吸收特征在能量上可以在近200毫电子伏特(1600厘米)的范围内移动。与单体染料相比,所有四聚体都以H聚集体的形式堆积,表现出发射猝灭和激发态寿命大幅缩短。我们应用一个纯电子激子理论模型来描述观察到的吸收光谱的变化。该模型与测量数据以及吸收光谱和圆二色光谱的更复杂的振动电子模型都一致,表明Cy5和Cy5.5异质聚集体在很大程度上可以用分子激子理论来描述。最后,我们扩展纯电子激子模型来描述基于福斯特共振能量转移(FRET)的理想化J聚集体,并讨论这种器件相对于传统FRET中继器的潜在优势。