Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.
Nat Protoc. 2023 Jan;18(1):3-21. doi: 10.1038/s41596-022-00758-8. Epub 2022 Oct 21.
This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires ~2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.
本方案扩展描述了低成本制作可快速定制的活体光遗传学用光学神经探针。我们详细介绍了使用 3D 打印机制作微创微尺度无机发光二极管(LED)基神经探针的方法,该探针可控制自由活动动物的神经回路活动,从而扩展了之前发表的两个方案的范围,这两个方案描述了用于研究完整神经系统的光电设备的制作和实施。3D 打印制作工艺不需要广泛的培训,也不需要昂贵的材料、专用的洁净室设施和传统制造工艺中常见的耗时的微加工技术。因此,可以根据实验需要快速优化探针的设计,降低定制成本和周转时间。例如,3D 打印探针可以定制以针对多个脑区,或放大用于大动物模型。本方案包含三个步骤:(1)探针制作,(2)无线模块准备和(3)植入活体检测。对于有经验的研究人员来说,神经探针和无线模块的制作需要大约 2 天时间,而植入操作每个动物需要 30-60 分钟。行为检测所需的时间将根据实验设计而有所不同,并且应该在植入探针之前至少对动物进行 5 天的处理,让每个动物熟悉其处理人员,从而减少可能影响行为检测结果的处理压力。定制探针的实施提高了光遗传学实验设计的灵活性,并增加了对活体光遗传学研究用无线探针的使用。