Suppr超能文献

使用器官特异性、可扩展的无线光电装置对小鼠迷走神经传入纤维进行光遗传学靶向

Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device.

作者信息

Hong Sungcheol, Kim Woo Seok, Han Yong, Cherukuri Rahul, Jung Haemin, Campos Carlos, Wu Qi, Park Sung Il

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, US.

Department of Pediatrics, Baylor College of Medicine, Houston, US.

出版信息

Bio Protoc. 2022 Mar 5;12(5):e4341. doi: 10.21769/BioProtoc.4341.

Abstract

Optogenetics has the potential to transform the study of the peripheral nervous system (PNS), but the complex anatomy of the PNS poses unique challenges for the focused delivery of light to specific tissues. This protocol describes the fabrication of a wireless telemetry system for studying peripheral sensory pathways. Unlike existing wireless approaches, the low-power wireless telemetry offers organ specificity via a sandwiched pre-curved tether, and enables high-throughput analysis of behavioral experiments with a channel isolation strategy. We describe the technical procedures for the construction of these devices, the wireless power transmission (TX) system with antenna coils, and their implementation for experimental applications. In total, the timeline of the procedure, including device fabrication, implantation, and preparation to begin experimentation can be completed in ~2-4 weeks. Implementation of these devices allows for chronic (>1 month) wireless optogenetic manipulation of peripheral neural pathways in freely behaving animals navigating homecage environments (up to 8).

摘要

光遗传学有潜力改变对周围神经系统(PNS)的研究,但PNS复杂的解剖结构给将光精准传递到特定组织带来了独特挑战。本方案描述了一种用于研究外周感觉通路的无线遥测系统的制作方法。与现有的无线方法不同,这种低功耗无线遥测通过夹在中间的预弯曲系绳实现器官特异性,并通过通道隔离策略实现行为实验的高通量分析。我们描述了构建这些设备、带有天线线圈的无线电力传输(TX)系统及其在实验应用中的实施的技术程序。整个程序的时间表,包括设备制造、植入和开始实验的准备工作,大约可在2至4周内完成。这些设备的实施允许在自由活动于笼舍环境(最多8只)的动物中对外周神经通路进行长期(>1个月)的无线光遗传学操纵。

相似文献

2
Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
Nat Protoc. 2013 Dec;8(12):2413-2428. doi: 10.1038/nprot.2013.158. Epub 2013 Nov 7.
4
Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
Nat Protoc. 2017 Feb;12(2):219-237. doi: 10.1038/nprot.2016.155. Epub 2017 Jan 5.
5
Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5742-5746. doi: 10.1109/EMBC46164.2021.9629753.
8
Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
Pain. 2017 Nov;158(11):2108-2116. doi: 10.1097/j.pain.0000000000000968.
10
A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations.
Sci Adv. 2023 Sep 29;9(39):eadi8918. doi: 10.1126/sciadv.adi8918. Epub 2023 Sep 27.

本文引用的文献

3
A wireless closed-loop system for optogenetic peripheral neuromodulation.
Nature. 2019 Jan;565(7739):361-365. doi: 10.1038/s41586-018-0823-6. Epub 2019 Jan 2.
4
Optogenetic Peripheral Nerve Immunogenicity.
Sci Rep. 2018 Sep 19;8(1):14076. doi: 10.1038/s41598-018-32075-0.
5
Optogenetic Induction of Colonic Motility in Mice.
Gastroenterology. 2018 Aug;155(2):514-528.e6. doi: 10.1053/j.gastro.2018.05.029. Epub 2018 May 18.
6
Transdermal optogenetic peripheral nerve stimulation.
J Neural Eng. 2017 Jun;14(3):034002. doi: 10.1088/1741-2552/aa5e20. Epub 2017 Feb 3.
7
Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.
Neuron. 2017 Feb 8;93(3):509-521.e3. doi: 10.1016/j.neuron.2016.12.031. Epub 2017 Jan 26.
8
Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):E8169-E8177. doi: 10.1073/pnas.1611769113. Epub 2016 Nov 28.
9
An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord.
Sci Rep. 2016 Oct 13;6:35185. doi: 10.1038/srep35185.
10
Sensory Neurons that Detect Stretch and Nutrients in the Digestive System.
Cell. 2016 Jun 30;166(1):209-21. doi: 10.1016/j.cell.2016.05.011. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验