Suppr超能文献

抑郁症心理健康筛查工具的最终验证:一种用于重度抑郁症的简短在线和离线筛查工具。

Final validation of the mental health screening tool for depressive disorders: A brief online and offline screening tool for major depressive disorder.

作者信息

Park Kiho, Yoon Seowon, Cho Surin, Choi Younyoung, Lee Seung-Hwan, Choi Kee-Hong

机构信息

School of Psychology, Korea University, Seoul, South Korea.

Department of Psychology, Ajou University, Seoul, South Korea.

出版信息

Front Psychol. 2022 Oct 5;13:992068. doi: 10.3389/fpsyg.2022.992068. eCollection 2022.

Abstract

Early screening for depressive disorders is crucial given that major depressive disorder (MDD) is one of the main reasons of global burden of disease, and depression is the underlying cause for 60% of suicides. The need for an accurate screening for depression with high diagnostic sensitivity and specificity in a brief and culturally adapted manner has emerged. This study reports the final stage of a 3-year research project for the development of depression screening tool. The developed Mental Health Screening Tool for Depressive Disorders (MHS:D) was designed to be administered in both online and offline environments with a high level of sensitivity and specificity in screening for major depressive disorder. A total of 527 individuals completed two versions (online/offline) of the MHS:D and existing depression scales, including the BDI-II, CES-D, and PHQ-9. The Mini International Neuropsychiatric Interview (MINI) for diagnostic sensitivity/specificity was also administered to all participants. Internal consistency, convergent validity, factor analysis, item response theory analysis, and receiver operating characteristics curve (ROC) analysis were performed. The MHS:D showed an excellent level of internal consistency and convergent validity as well as a one-factor model with a reasonable level of model fit. The MHS:D could screen for major depressive disorder accurately (0.911 sensitivity and 0.878 specificity for both online and paper-pencil versions). Item response theory analysis suggested that items from the MHS:D could provide significantly more information than other existing depression scales. These statistical analyses indicated that the MHS:D is a valid and reliable scale for screening Korean patients with MDD with high diagnostic sensitivity and specificity. Moreover, given that the MHS:D is a considerably brief scale that can be administered in either online or paper-pencil versions, it can be used effectively in various contexts, particularly during the pandemic.

摘要

鉴于重度抑郁症(MDD)是全球疾病负担的主要原因之一,且抑郁症是60%自杀事件的潜在诱因,因此对抑郁症进行早期筛查至关重要。于是便出现了以简洁且适应文化背景的方式进行高诊断敏感性和特异性的抑郁症准确筛查的需求。本研究报告了一项为期3年的抑郁症筛查工具开发研究项目的最后阶段。所开发的抑郁症心理健康筛查工具(MHS:D)旨在在线上和线下环境中使用,在筛查重度抑郁症方面具有高度的敏感性和特异性。共有527人完成了MHS:D的两个版本(线上/线下)以及现有的抑郁症量表,包括贝克抑郁量表第二版(BDI-II)、流调中心用抑郁量表(CES-D)和患者健康问卷-9(PHQ-9)。还对所有参与者进行了用于诊断敏感性/特异性的迷你国际神经精神访谈(MINI)。进行了内部一致性、收敛效度、因子分析、项目反应理论分析和受试者工作特征曲线(ROC)分析。MHS:D显示出优异的内部一致性和收敛效度水平,以及具有合理拟合度水平的单因素模型。MHS:D能够准确筛查重度抑郁症(线上和纸笔版本的敏感性均为0.911,特异性均为0.878)。项目反应理论分析表明,MHS:D中的项目比其他现有的抑郁症量表能提供更多的信息。这些统计分析表明,MHS:D是一种有效且可靠的量表,可用于筛查韩国的重度抑郁症患者,具有高诊断敏感性和特异性。此外,鉴于MHS:D是一个相当简短的量表,可以在线上或纸笔版本中使用,它可以在各种情况下有效使用,尤其是在疫情期间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e3/9580402/4d70097713ab/fpsyg-13-992068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验