文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫疗法通过影响肿瘤微环境来改善疾病预后:文献计量学研究。

Immunotherapy improves disease prognosis by affecting the tumor microenvironment: A bibliometric study.

机构信息

Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China.

Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.

出版信息

Front Immunol. 2022 Oct 6;13:967076. doi: 10.3389/fimmu.2022.967076. eCollection 2022.


DOI:10.3389/fimmu.2022.967076
PMID:36275770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9582136/
Abstract

BACKGROUND: Immunotherapy has shown great potential for the treatment of multiple cancer and has been proven to be closely related to the tumor microenvironment. This article reveals collaborations and interactions among authors, nations, organizations, and periodicals assesses the knowledge base, and discovers hot tendencies and new topics associated with immunotherapy-tumor microenvironment (TME) research. METHODS: This article utilized bibliometrics and visual methods to provide a comprehensive overview of immunotherapy-TME research. Our team retrieved the WoSCC for research and reviews associated with immunotherapy and the tumor microenvironment. VOSviewer and Citespace were primarily used for literature measurement and knowledge graph analysis. RESULT: All English articles and reviews on cancer immunotherapy effectiveness were collected, and 1,419 academic journals with 53,773 authors from 7,008 institutions in 92 countries/regions were found. Publications associated with immunotherapy-TME research were stably increasing. ( = 722) published the most papers on immunotherapy-TME, and ( = 6761) was the top co-cited journal. The published journals and co-cited journals focused on cancer and immunology fields. The League of European Research Universities ( = 978), Harvard University ( = 528), and the University of Texas system ( = 520) were the most productive institutions. Yang Liu ( 34) and Topalian ( 1978) ranked first among the top 10 scholars and co-cited scholars. Simultaneously, immunotherapy-TME researchers were involved in active collaborations. Elements of TME, the foundation of immunotherapy, and the application of immunotherapy in cancers represented the three principal aspects of immunotherapy-TME research. The latest hot spots are drug resistance, prognosis prediction, efficacy prediction, and mA. Nanomedicine and mA may be future hot topics. Future research in immunotherapy-TME may be directed at discovering how mA modification affects tumor development by altering the tumor microenvironment and exploring how to enhance response or reduce drug resistance to immunotherapy by reversing or mediating the physicochemical properties of the TME. CONCLUSIONS: MA and nanomedicine are also emerging hotspots in time zone diagrams with high centrality, and prognosis prediction using bioinformatics based on the development of prediction technology may be another future research hotspot.

摘要

背景:免疫疗法在治疗多种癌症方面显示出巨大潜力,并且已被证明与肿瘤微环境密切相关。本文揭示了作者、国家、组织和期刊之间的合作与互动,评估了知识基础,并发现了与免疫疗法-肿瘤微环境(TME)研究相关的热点趋势和新课题。

方法:本文利用文献计量学和可视化方法全面概述了免疫疗法-TME 研究。我们的团队检索了 WOSCC 中与癌症免疫疗法疗效相关的研究和综述。VOSviewer 和 Citespace 主要用于文献计量和知识图谱分析。

结果:共收集了所有关于癌症免疫疗法疗效的英文文章和综述,发现来自 92 个国家/地区的 7008 个机构的 53773 名作者发表了 1419 种与免疫疗法-TME 相关的学术期刊。与免疫疗法-TME 研究相关的出版物数量稳步增加。( = 722)发表的免疫疗法-TME 相关论文最多,( = 6761)是被引频次最高的期刊。发表的期刊和被引频次最高的期刊主要集中在癌症和免疫学领域。欧洲研究型大学联盟( = 978)、哈佛大学( = 528)和德克萨斯大学系统( = 520)是最具生产力的机构。( = 34)和 Topalian( = 1978)在排名前 10 的学者和高被引学者中排名第一。同时,免疫疗法-TME 研究人员之间也进行了积极的合作。TME 的元素、免疫疗法的基础以及免疫疗法在癌症中的应用是免疫疗法-TME 研究的三个主要方面。最新的热点是耐药性、预后预测、疗效预测和 mA。纳米医学和 mA 可能是未来的热点话题。免疫疗法-TME 的未来研究可能旨在发现 mA 修饰如何通过改变肿瘤微环境来影响肿瘤的发展,并探索如何通过逆转或调节 TME 的物理化学性质来增强对免疫疗法的反应或降低耐药性。

结论:mA 和纳米医学也是时区图中的新兴热点,具有较高的中心性,基于预测技术发展的生物信息学预后预测可能是另一个未来的研究热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/1623a3e5690d/fimmu-13-967076-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/aa4134777c6f/fimmu-13-967076-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/bbb5afcd42fc/fimmu-13-967076-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/57c5a4c2edae/fimmu-13-967076-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/fd36b7b872eb/fimmu-13-967076-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/a6b864013775/fimmu-13-967076-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/5e29b3e05e4e/fimmu-13-967076-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/526030e3f09b/fimmu-13-967076-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/d0e8d97a7707/fimmu-13-967076-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/c16b5d5fc77b/fimmu-13-967076-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/cb9bbd543ac7/fimmu-13-967076-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/9b86086c692c/fimmu-13-967076-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/0332a93e0072/fimmu-13-967076-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/1623a3e5690d/fimmu-13-967076-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/aa4134777c6f/fimmu-13-967076-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/bbb5afcd42fc/fimmu-13-967076-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/57c5a4c2edae/fimmu-13-967076-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/fd36b7b872eb/fimmu-13-967076-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/a6b864013775/fimmu-13-967076-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/5e29b3e05e4e/fimmu-13-967076-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/526030e3f09b/fimmu-13-967076-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/d0e8d97a7707/fimmu-13-967076-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/c16b5d5fc77b/fimmu-13-967076-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/cb9bbd543ac7/fimmu-13-967076-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/9b86086c692c/fimmu-13-967076-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/0332a93e0072/fimmu-13-967076-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727c/9582136/1623a3e5690d/fimmu-13-967076-g013.jpg

相似文献

[1]
Immunotherapy improves disease prognosis by affecting the tumor microenvironment: A bibliometric study.

Front Immunol. 2022

[2]
Current perspectives and trends of CD39-CD73-eAdo/A2aR research in tumor microenvironment: a bibliometric analysis.

Front Immunol. 2024

[3]
WTAP-mediated abnormal m6A modification promotes cancer progression by remodeling the tumor microenvironment: bibliometric and database analyses.

Transl Cancer Res. 2024-2-29

[4]
A Bibliometric Analysis of Metabolic Reprogramming in the Tumor Microenvironment From 2003 to 2022.

Cancer Rep (Hoboken). 2024-8

[5]
Worldwide productivity and research trend of publications concerning tumor immune microenvironment (TIME): a bibliometric study.

Eur J Med Res. 2023-7-10

[6]
A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021.

Front Immunol. 2022

[7]
A bibliometric and visual analysis of cancer-associated fibroblasts.

Front Immunol. 2023

[8]
Unveiling the Research Landscape and Emerging Trends in Cell Cycle for Cancer Immunotherapy: A Bibliometric Analysis (1990-2022).

Med Sci Monit. 2023-12-1

[9]
Global trends in tumor microenvironment-related research on tumor vaccine: a review and bibliometric analysis.

Front Immunol. 2024

[10]
A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus.

Front Immunol. 2024

引用本文的文献

[1]
Single-cell analysis links DCUN1D5 to immune remodeling and cisplatin resistance in recurrent osteosarcoma.

Commun Biol. 2025-7-8

[2]
Bi-level graph learning unveils prognosis-relevant tumor microenvironment patterns in breast multiplexed digital pathology.

Patterns (N Y). 2025-2-11

[3]
Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges.

Cancers (Basel). 2025-2-27

[4]
Novel combination therapy using recombinant oncolytic adenovirus silk hydrogel and PD-L1 inhibitor for bladder cancer treatment.

J Nanobiotechnology. 2024-10-18

[5]
A Bibliometric Analysis of Metabolic Reprogramming in the Tumor Microenvironment From 2003 to 2022.

Cancer Rep (Hoboken). 2024-8

[6]
Frontiers and hotspots in hand, foot, and mouth disease research during 2006 to 2023: A bibliometric and visual analysis.

Medicine (Baltimore). 2024-6-14

[7]
Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns in Breast Multiplexed Digital Pathology.

bioRxiv. 2024-10-4

[8]
Spatiotemporal evolution of AML immune microenvironment remodeling and RNF149-driven drug resistance through single-cell multidimensional analysis.

J Transl Med. 2023-10-27

[9]
Knowledge mapping of therapeutic cancer vaccine from 2013 to 2022: A bibliometric and visual analysis.

Hum Vaccin Immunother. 2023-8

[10]
Identifying the oncogenic roles of FAP in human cancers based on systematic analysis.

Aging (Albany NY). 2023-7-24

本文引用的文献

[1]
Editorial: Advances in Mathematical and Computational Oncology.

Front Physiol. 2022-4-7

[2]
Evolution of Immunotherapy for Ovarian Cancer from a Bird's-Eye Perspective: A Text-Mining Analysis of Publication Trends and Topics.

Front Oncol. 2022-2-24

[3]
The Global Status and Trends of Enteropeptidase: A Bibliometric Study.

Front Med (Lausanne). 2022-2-10

[4]
Knowledge Mapping of Immunotherapy for Hepatocellular Carcinoma: A Bibliometric Study.

Front Immunol. 2022

[5]
N6-Methyladenosine RNA Modification in the Tumor Immune Microenvironment: Novel Implications for Immunotherapy.

Front Immunol. 2021

[6]
The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer.

Nature. 2021-12

[7]
Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade.

Cell Rep. 2021-11-23

[8]
Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy.

Adv Sci (Weinh). 2022-1

[9]
Trends in the Research Into Immune Checkpoint Blockade by Anti-PD1/PDL1 Antibodies in Cancer Immunotherapy: A Bibliometric Study.

Front Pharmacol. 2021-8-17

[10]
Overcoming PD-1 Blockade Resistance with CpG-A Toll-Like Receptor 9 Agonist Vidutolimod in Patients with Metastatic Melanoma.

Cancer Discov. 2021-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索