Suppr超能文献

双水平图学习揭示了乳腺多重数字病理学中与预后相关的肿瘤微环境模式。

Bi-level graph learning unveils prognosis-relevant tumor microenvironment patterns in breast multiplexed digital pathology.

作者信息

Wang Zhenzhen, Santa-Maria Cesar A, Popel Aleksander S, Sulam Jeremias

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Patterns (N Y). 2025 Feb 11;6(3):101178. doi: 10.1016/j.patter.2025.101178. eCollection 2025 Mar 14.

Abstract

The tumor microenvironment (TME) is widely recognized for its central role in driving cancer progression and influencing prognostic outcomes. Increasing efforts have been dedicated to characterizing it, including its analysis with modern deep learning. However, identifying generalizable biomarkers has been limited by the uninterpretable nature of their predictions. We introduce a data-driven yet interpretable approach for identifying cellular patterns in the TME associated with patient prognoses. Our method relies on constructing a bi-level graph model: a cellular graph, which models the TME, and a population graph, capturing inter-patient similarities given their respective cellular graphs. We demonstrate our approach in breast cancer, showing that the identified patterns provide a risk-stratification system with new complementary information to standard clinical subtypes, and these results are validated in two independent cohorts. Our methodology could be applied to other cancer types more generally, providing insights into the spatial cellular patterns associated with patient outcomes.

摘要

肿瘤微环境(TME)因其在推动癌症进展和影响预后结果方面的核心作用而得到广泛认可。人们越来越致力于对其进行表征,包括使用现代深度学习对其进行分析。然而,识别可推广的生物标志物受到其预测不可解释性的限制。我们引入了一种数据驱动且可解释的方法来识别TME中与患者预后相关的细胞模式。我们的方法依赖于构建一个双层图模型:一个细胞图,用于对TME进行建模;一个群体图,用于捕捉患者之间基于各自细胞图的相似性。我们在乳腺癌中展示了我们的方法,表明所识别的模式提供了一个风险分层系统,为标准临床亚型提供了新的补充信息,并且这些结果在两个独立队列中得到了验证。我们的方法更普遍地可应用于其他癌症类型,为与患者预后相关的空间细胞模式提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63dd/11962943/9d1bd128f1c9/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验