Ozkan Sveta Zhiraslanovna, Tkachenko Lyudmila Ivanovna, Efimov Oleg Nikolaevich, Karpacheva Galina Petrovna, Nikolaeva Galina Vasilevna, Kostev Aleksandr Ivanovich, Dremova Nadejda Nikolaevna, Kabachkov Evgeny Nikolaevich
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia.
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Academician Semenov Prospect, Moscow 142432, Russia.
Polymers (Basel). 2023 Apr 15;15(8):1896. doi: 10.3390/polym15081896.
The electrochemical behavior of new electrode materials based on poly-N-phenylanthranilic acid (P-N-PAA) composites with reduced graphene oxide (RGO) was studied for the first time. Two methods of obtaining RGO/P-N-PAA composites were suggested. Hybrid materials were synthesized via in situ oxidative polymerization of N-phenylanthranilic acid (N-PAA) in the presence of graphene oxide (GO) (RGO/P-N-PAA-1), as well as from a P-N-PAA solution in DMF containing GO (RGO/P-N-PAA-2). GO post-reduction in the RGO/P-N-PAA composites was carried out under IR heating. Hybrid electrodes are electroactive layers of RGO/P-N-PAA composites stable suspensions in formic acid (FA) deposited on the glassy carbon (GC) and anodized graphite foil (AGF) surfaces. The roughened surface of the AGF flexible strips provides good adhesion of the electroactive coatings. Specific electrochemical capacitances of AGF-based electrodes depend on the method for the production of electroactive coatings and reach 268, 184, 111 F∙g (RGO/P-N-PAA-1) and 407, 321, 255 F∙g (RGO/P-N-PAA-2.1) at 0.5, 1.5, 3.0 mA·cm in an aprotic electrolyte. Specific weight capacitance values of IR-heated composite coatings decrease as compared to capacitance values of primer coatings and amount to 216, 145, 78 F∙g (RGO/P-N-PAA-1) and 377, 291, 200 F∙g (RGO/P-N-PAA-2.1). With a decrease in the weight of the applied coating, the specific electrochemical capacitance of the electrodes increases to 752, 524, 329 F∙g (AGF/RGO/P-N-PAA-2.1) and 691, 455, 255 F∙g (AGF/RGO/P-N-PAA-1).
首次研究了基于聚-N-苯基邻氨基苯甲酸(P-N-PAA)与还原氧化石墨烯(RGO)复合材料的新型电极材料的电化学行为。提出了两种制备RGO/P-N-PAA复合材料的方法。通过在氧化石墨烯(GO)存在下原位氧化聚合N-苯基邻氨基苯甲酸(N-PAA)合成杂化材料(RGO/P-N-PAA-1),以及由含GO的N,N-二甲基甲酰胺(DMF)中的P-N-PAA溶液合成(RGO/P-N-PAA-2)。RGO/P-N-PAA复合材料中的GO后还原在红外加热下进行。杂化电极是RGO/P-N-PAA复合材料在甲酸(FA)中的稳定悬浮液的电活性层,沉积在玻碳(GC)和阳极氧化石墨箔(AGF)表面。AGF柔性条带的粗糙表面为电活性涂层提供了良好的附着力。基于AGF的电极的比电化学电容取决于电活性涂层的制备方法,在非质子电解质中,在0.5、1.5、3.0 mA·cm时分别达到268、184、111 F∙g(RGO/P-N-PAA-1)和407、321、255 F∙g(RGO/P-N-PAA-2.1)。与底漆涂层的电容值相比,红外加热复合涂层的比重量电容值降低,分别为216、145、78 F∙g(RGO/P-N-PAA-1)和377、291、200 F∙g(RGO/P-N-PAA-2.1)。随着所施加涂层重量的减少,电极的比电化学电容增加到752、524、329 F∙g(AGF/RGO/P-N-PAA-2.1)和691、455、255 F∙g(AGF/RGO/P-N-PAA-1)。