Suppr超能文献

高效多相钯催化剂在氧化级联反应中的应用。

Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions.

机构信息

Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China.

Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230601, P.R. China.

出版信息

Acc Chem Res. 2021 May 4;54(9):2275-2286. doi: 10.1021/acs.accounts.1c00122. Epub 2021 Apr 19.

Abstract

Palladium-catalyzed oxidations involving cascade processes provide a versatile platform for streamlined conversion of simple feedstocks into functional molecules with high atom and step economy. However, the achievement of high palladium efficiency and selectivity in Pd-catalyzed oxidative cascade reactions is still challenging in many cases, as a result of the aggregation of active palladium species to Pd black and the possible side reactions during each bond-forming step. The two current solutions for addressing these issues are either to utilize oxidant-stable ligands or to use electron transfer mediators (ETMs). The former solution, which includes the use of amines, pyridines, sulfoxides, and carbene derivatives, inhibits aggregation of Pd during the catalytic cycle, while the latter solution facilitates reoxidation of Pd to Pd to improve the activity and selectivity. Following our long-standing interest in Pd-catalyzed oxidations, very recently we developed heterogeneous catalysts to resolve the issues mentioned above in oxidative cascade reactions. The heterogeneous palladium catalysts (Pd-AmP-MCF or Pd-AmP-CNC) comprise palladium nanoclusters (1-2 nm) immobilized on amino-functionalized siliceous mesocellular foam (MCF) or on crystalline nanocellulose (CNC), exhibiting high activity, selectivity as well as excellent recycling ability.In this Account, we will discuss the synthesis and characterizations of the heterogeneous palladium catalysts, as well as their catalytic behaviors, and the mechanisms involved in their reactions. An important aspect of these catalysts in oxidation reactions is the generation of active Pd(II) species within the heterogeneous phase. Typical oxidative cascade reactions of our recent research on this topic include oxidative carbocyclization-carbonylation, oxidative carbocyclization-borylation, oxidative alkynylation-cyclization, oxidative carbonylation-cyclization, and oxidative carbocyclization-alkynylation. These reactions provide access to important compounds attractive in medicinal chemistry and functional materials, such as γ-lactone/γ-lactam-based poly rings, cyclobutenols, highly substituted furans, and oxaboroles. During these processes, the heterogeneous catalysts exhibited much higher turnover numbers (TONs) than their homogeneous counterparts (e.g., Pd(OAc)) as well as unique selectivity that cannot be achieved by homogeneous palladium catalysts. The origin of the high efficiency and unique selectivity of the heterogeneous catalysts was also investigated. Asymmetric syntheses for the construction of optically pure compounds were realized based on the excellent selectivity in these heterogeneous processes. Kinetic studies revealed that the rate and yield of the reactions were essentially maintained during recycling, which demonstrates that Pd-AmP-MCF and Pd-AmP-CNC are robust and highly active in these oxidative cascade reactions. In addition, inductively coupled plasma optical emisson spectroscopy (ICP-OES) analysis and hot filtration test suggest that these processes most likely proceed via a heterogeneous pathway.Recent progress in our group has shown that the activity of Pd-AmP-MCF and Pd-AmP-CNC could be improved even further by the addition of Ag to generate cationic Pd(II). Furthermore, intriguing solvent effects were observed in a Pd-AmP-MCF-catalyzed oxidative cascade process, and solvent-controlled chemoselective transformations were developed based on this property of the catalyst. The heterogeneous strategy of this Account provides solutions to palladium deactivation and selectivity issues in Pd(II)-catalyzed oxidative cascade reactions and enables efficient catalyst recycling, which will open up new opportunities in oxidative cascade reactions.

摘要

钯催化的氧化反应涉及级联过程,为从简单的原料到具有高原子经济性和步骤经济性的功能分子的转化提供了一个通用的平台。然而,在许多情况下,要实现钯催化氧化级联反应中的高钯效率和选择性仍然具有挑战性,这是由于活性钯物种聚集为钯黑和在每个键形成步骤中可能发生的副反应所致。解决这些问题的当前两种解决方案是使用稳定的氧化剂配体或使用电子转移介体 (ETM)。前一种解决方案包括使用胺、吡啶、亚砜和卡宾衍生物,在催化循环中抑制钯的聚集,而后一种解决方案则有利于将钯重新氧化为 Pd 以提高活性和选择性。在我们对钯催化氧化的长期兴趣的推动下,我们最近开发了用于解决氧化级联反应中上述问题的多相催化剂。多相钯催化剂(Pd-AmP-MCF 或 Pd-AmP-CNC)由负载在氨基功能化介孔泡沫(MCF)或结晶纳米纤维素(CNC)上的钯纳米簇(1-2nm)组成,表现出高活性、选择性以及出色的可回收性。在本报告中,我们将讨论多相钯催化剂的合成和表征,以及它们的催化行为和反应机制。这些催化剂在氧化反应中的一个重要方面是在多相相中生成活性 Pd(II)物种。我们最近在这个主题上的研究的典型氧化级联反应包括氧化碳环化-羰基化、氧化碳环化-硼化、氧化炔基化-环化、氧化羰基化-环化和氧化碳环化-炔基化。这些反应提供了对医药化学和功能材料有吸引力的重要化合物,例如 γ-内酯/γ-内酰胺基多环、环丁烯醇、高度取代的呋喃和氧杂硼烷。在这些过程中,多相催化剂的周转数(TON)比其均相对应物(例如 Pd(OAc))高得多,并且具有均相钯催化剂无法实现的独特选择性。我们还研究了多相催化剂高效和独特选择性的来源。基于这些多相过程中的优异选择性,实现了构建光学纯化合物的不对称合成。动力学研究表明,在回收过程中反应的速率和产率基本保持不变,这表明 Pd-AmP-MCF 和 Pd-AmP-CNC 在这些氧化级联反应中具有很强的稳定性和高活性。此外,电感耦合等离子体光发射光谱(ICP-OES)分析和热过滤测试表明,这些过程很可能通过多相途径进行。我们小组的最新进展表明,通过添加银来生成阳离子 Pd(II),可以进一步提高 Pd-AmP-MCF 和 Pd-AmP-CNC 的活性。此外,在 Pd-AmP-MCF 催化的氧化级联反应中观察到了有趣的溶剂效应,并基于该催化剂的这一特性开发了溶剂控制的选择性转化。本报告中的多相策略为 Pd(II)催化的氧化级联反应中的钯失活和选择性问题提供了解决方案,并实现了高效的催化剂回收,这将为氧化级联反应开辟新的机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e947/8154202/c28ca5a91b4c/ar1c00122_0008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验