Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States.
Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States.
J Chem Inf Model. 2022 Nov 28;62(22):5607-5621. doi: 10.1021/acs.jcim.2c00999. Epub 2022 Oct 24.
Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220. By screening of two large chemical libraries for compounds interacting with β3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVβ3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion a quinoline moiety instead of an acidic carboxyl group.
整合素 αVβ3 抑制剂在多种疾病的治疗中有很大的应用前景。大多数以 RGD 基序为模式的靶向 αVβ3 的小分子都是部分激动剂,因为它们诱导高亲和力的配体结合构象,并在没有激活刺激的情况下使受体准备结合配体,部分原因是它们天冬氨酸羧基与金属离子依赖性粘附位点(MIDAS)中的金属离子之间的电荷-电荷相互作用。基于我们之前对相关整合素 αIIbβ3 的研究,我们寻找缺乏这种典型天冬氨酸羧基的纯 αVβ3 拮抗剂,而是通过直接与 MIDAS 金属离子的一个配位残基结合来结合,具体来说是β3 E220。通过对两个与β3 E220 相互作用的大型化学文库进行筛选,我们确实发现了一种新型分子,它不含有酸性羧基基团,也不会诱导受体的高亲和力配体结合状态。该化合物的化学优化版本的功能和结构表征导致发现了一种新型的小分子纯αVβ3 拮抗剂,(i)它不会使受体准备结合配体,也不会诱导杂交结构域摆动或受体延伸,如抗体结合和负染色电子显微镜所判断的,(ii)如诱导拟合对接构象的元动力学重新评分所预测的那样,结合在 RGD 结合位点,并用该化合物结合的整合素的冷冻电子显微镜结构证实,以及(iii)用喹啉部分而不是酸性羧基基团配位 MIDAS 金属离子。