Suppr超能文献

海马体和新皮层之间自主相互作用的模型驱动睡眠依赖型记忆巩固。

A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation.

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104.

Department of Psychology, Princeton University, Princeton, NJ 08540.

出版信息

Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2123432119. doi: 10.1073/pnas.2123432119. Epub 2022 Oct 24.

Abstract

How do we build up our knowledge of the world over time? Many theories of memory formation and consolidation have posited that the hippocampus stores new information, then "teaches" this information to the neocortex over time, especially during sleep. But it is unclear, mechanistically, how this actually works-How are these systems able to interact during periods with virtually no environmental input to accomplish useful learning and shifts in representation? We provide a framework for thinking about this question, with neural network model simulations serving as demonstrations. The model is composed of hippocampus and neocortical areas, which replay memories and interact with one another completely autonomously during simulated sleep. Oscillations are leveraged to support error-driven learning that leads to useful changes in memory representation and behavior. The model has a non-rapid eye movement (NREM) sleep stage, where dynamics between the hippocampus and neocortex are tightly coupled, with the hippocampus helping neocortex to reinstate high-fidelity versions of new attractors, and a REM sleep stage, where neocortex is able to more freely explore existing attractors. We find that alternating between NREM and REM sleep stages, which alternately focuses the model's replay on recent and remote information, facilitates graceful continual learning. We thus provide an account of how the hippocampus and neocortex can interact without any external input during sleep to drive useful new cortical learning and to protect old knowledge as new information is integrated.

摘要

随着时间的推移,我们如何积累对世界的认识?许多记忆形成和巩固的理论假设海马体存储新信息,然后随着时间的推移“教授”这些信息给新皮层,尤其是在睡眠期间。但从机制上讲,这实际上是如何运作的——在几乎没有环境输入的情况下,这些系统如何能够相互作用以完成有用的学习和表示的转变?我们提供了一个思考这个问题的框架,以神经网络模型模拟作为演示。该模型由海马体和新皮层区域组成,在模拟睡眠期间完全自主地重播记忆并相互作用。利用振荡来支持错误驱动的学习,从而导致记忆表示和行为的有用变化。该模型具有非快速眼动(NREM)睡眠阶段,其中海马体和新皮层之间的动态紧密耦合,海马体帮助新皮层重新建立新吸引子的高保真版本,以及快速眼动(REM)睡眠阶段,其中新皮层能够更自由地探索现有的吸引子。我们发现,在 NREM 和 REM 睡眠阶段之间交替,交替地将模型的重播重点放在最近和远程信息上,有助于优雅地持续学习。因此,我们提供了一个解释,说明海马体和新皮层如何在没有任何外部输入的情况下在睡眠期间相互作用,以推动有用的新皮层学习,并在整合新信息时保护旧知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0996/9636926/258a21d0d4c6/pnas.2123432119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验