Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Deutschland.
Institut für Massivbau und Baustofftechnologie (IMB), Karlsruher Institut für Technologie (KIT), Gotthard-Franz-Str. 3, 76131Karlsruhe, Deutschland.
ACS Appl Bio Mater. 2022 Nov 21;5(11):5190-5198. doi: 10.1021/acsabm.2c00616. Epub 2022 Oct 24.
Under environmental conditions, biofilms can oftentimes be found on different surfaces, accompanied by the structural degradation of the substrate. Since high-copper-content paints were banned in the EU, a solution for the protection of these surfaces has to be found. In addition to hydrophobation, making the surfaces inherently biofilm-repellent is a valid strategy. We want to accomplish this via the metal exchange in calcium silicate hydrate (CSH) substrates with transition metals. As has been shown with Europium, even small amounts of metal can have a great influence on the material properties. To effectively model CSH surfaces, ultrathin CSH films were grown on silicon wafers using Ca(OH) solutions. Subsequently, copper was incorporated as an active component via ion exchange. Biofilm development is quantified using a multiple-resistant strain described as a strong biofilm former cultivated in the culture medium for 24 h. Comprehensive structural and chemical analyses of the substrates are done by environmental scanning electron microscopy (ESEM), transmission Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Results do not show any structural deformation of the substrates by the incorporation of the Cu combined with three-dimensional (3D) homogeneous distribution. While the copper-free CSH phase shows a completely random distribution of the bacteria in biofilms, the samples with copper incorporation reveal lower bacterial colonization of the modified surfaces with an enhanced cluster formation.
在环境条件下,生物膜常常可以在不同的表面上找到,同时伴随着基质的结构降解。由于欧盟已经禁止使用高铜含量的油漆,因此必须找到一种保护这些表面的方法。除了疏水性之外,使表面本身具有抗生物膜性也是一种有效的策略。我们希望通过在含有过渡金属的硅酸钙水合物(CSH)基质中进行金属交换来实现这一目标。正如铕所表明的那样,即使少量的金属也可以对材料性能产生很大的影响。为了有效地模拟 CSH 表面,使用 Ca(OH)溶液在硅晶片上生长超薄的 CSH 薄膜。随后,通过离子交换将铜掺入作为活性成分。通过在培养 24 小时的培养基中培养的被描述为强生物膜形成菌的多抗性菌株来量化生物膜的发展。通过环境扫描电子显微镜(ESEM)、传输傅里叶变换红外光谱(FT-IR)、X 射线光电子能谱(XPS)和飞行时间二次离子质谱(ToF-SIMS)对基质进行全面的结构和化学分析。结果表明,在掺入 Cu 的情况下,基质没有任何结构变形,同时具有三维(3D)均匀分布。虽然无铜的 CSH 相显示出生物膜中细菌完全随机的分布,但掺入铜的样品显示出改性表面上细菌定植的减少,并且簇形成增强。