Suppr超能文献

急性缺血性卒中术后锥束CT图像的机器学习能否改善24小时内出血性转化的检测?一项初步研究。

Can machine learning of post-procedural cone-beam CT images in acute ischemic stroke improve the detection of 24-h hemorrhagic transformation? A preliminary study.

作者信息

Da Ros Valerio, Duggento Andrea, Cavallo Armando Ugo, Bellini Luigi, Pitocchi Francesca, Toschi Nicola, Mascolo Alfredo Paolo, Sallustio Fabrizio, Di Giuliano Francesca, Diomedi Marina, Floris Roberto, Garaci Francesco, Zeleňák Kamil, Maestrini Ilaria

机构信息

Department of Biomedicine and Prevention, University Hospital of Rome "Tor Vergata", Viale Oxford 81, Rome, Italy.

Stroke Center, Department of Systems Medicine, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.

出版信息

Neuroradiology. 2023 Mar;65(3):599-608. doi: 10.1007/s00234-022-03070-0. Epub 2022 Oct 25.

Abstract

PURPOSE

Hemorrhagic transformation (HT) is an independent predictor of unfavorable outcome in acute ischemic stroke (AIS) patients undergoing endovascular thrombectomy (EVT). Its early identification could help tailor AIS management. We hypothesize that machine learning (ML) applied to cone-beam computed tomography (CB-CT), immediately after EVT, improves performance in 24-h HT prediction.

METHODS

We prospectively enrolled AIS patients undergoing EVT, post-procedural CB-CT, and 24-h non-contrast CT (NCCT). Three raters independently analyzed imaging at four anatomic levels qualitatively and quantitatively selecting a region of interest (ROI) < 5 mm. Each ROI was labeled as "hemorrhagic" or "non-hemorrhagic" depending on 24-h NCCT. For each level of CB-CT, Mean Hounsfield Unit (HU), minimum HU, maximum HU, and signal- and contrast-to-noise ratios were calculated, and the differential HU-ROI value was compared between both hemispheres. The number of anatomic levels affected was computed for lesion volume estimation. ML with the best validation performance for 24-h HT prediction was selected.

RESULTS

One hundred seventy-two ROIs from affected hemispheres of 43 patients were extracted. Ninety-two ROIs were classified as unremarkable, whereas 5 as parenchymal contrast staining, 29 as ischemia, 7 as subarachnoid hemorrhages, and 39 as HT. The Bernoulli Naïve Bayes was the best ML classifier with a good performance for 24-h HT prediction (sensitivity = 1.00; specificity = 0.75; accuracy = 0.82), though precision was 0.60.

CONCLUSION

ML demonstrates high-sensitivity but low-accuracy 24-h HT prediction in AIS. The automated CB-CT imaging evaluation resizes sensitivity, specificity, and accuracy rates of visual interpretation reported in the literature so far. A standardized quantitative interpretation of CB-CT may be warranted to overcome the inter-operator variability.

摘要

目的

出血性转化(HT)是接受血管内血栓切除术(EVT)的急性缺血性卒中(AIS)患者预后不良的独立预测因素。早期识别有助于制定AIS的治疗方案。我们假设,在EVT后立即将机器学习(ML)应用于锥束计算机断层扫描(CB-CT),可提高24小时HT预测的准确性。

方法

我们前瞻性纳入了接受EVT、术后CB-CT和24小时非增强CT(NCCT)的AIS患者。三名评估者独立地在四个解剖层面定性和定量分析影像,选择小于5毫米的感兴趣区域(ROI)。根据24小时NCCT,将每个ROI标记为“出血性”或“非出血性”。对于CB-CT的每个层面,计算平均亨氏单位(HU)、最小HU、最大HU以及信号和对比噪声比,并比较两侧半球之间的HU-ROI差值。计算受影响的解剖层面数量以估计病变体积。选择对24小时HT预测具有最佳验证性能的ML。

结果

从43例患者的患侧半球提取了172个ROI。92个ROI被分类为无异常,5个为实质对比剂染色,29个为缺血,7个为蛛网膜下腔出血,39个为HT。伯努利朴素贝叶斯是最佳的ML分类器,对24小时HT预测具有良好性能(敏感性=1.00;特异性=0.75;准确性=0.82),尽管精确率为0.60。

结论

ML在AIS的24小时HT预测中显示出高敏感性但低准确性。自动CB-CT成像评估提高了迄今为止文献报道的视觉解读的敏感性、特异性和准确率。可能需要对CB-CT进行标准化的定量解读,以克服操作者间的变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验